Согласно историческим источникам, еще много тысячелетий назад наши предки, столкнувшись с болезнями, вызываемыми микроорганизмами, боролись с ними доступными средствами. Со временем человечество начало понимать, почему те или иные используемые издревле лекарства способны воздействовать на определенные болезни, и научилось изобретать новые лекарства. Сейчас объем средств, используемых для борьбы с патогенными микроорганизмами, достиг особо крупных масштабов, по сравнению даже с недавним прошлым. Давайте рассмотрим, как на протяжении своей истории человек, порой того не подозревая, использовал антибиотики, и как, по мере накопления знаний, использует их сейчас.

Спецпроект о борьбе человечества с патогенными бактериями, возникновении устойчивости к антибиотикам и новой эре в антимикробной терапии.

Спонсор спецпроекта - - разработчик новых высокоэффективных бинарных антимикробных препаратов.

Бактерии появились на нашей планете, по разным оценкам, приблизительно 3,5–4 миллиарда лет назад, задолго до эукариот . Бактерии, как и все живые существа, взаимодействовали друг с другом, конкурировали и враждовали. Мы не можем точно сказать, использовали ли они уже тогда антибиотики, чтобы победить других прокариот в схватке за лучшую среду или питательные вещества. Но существуют доказательства наличия генов, кодирующих устойчивость к бета-лактаму , тетрациклину и гликопептидным антибиотикам, в ДНК бактерий, которые находились в древнем пермафросте возрастом 30 000 лет .

С момента, который принято считать официальным открытием антибиотиков, прошло чуть менее ста лет, но проблема создания новых антимикробных препаратов и использования уже известных при условии быстро возникающей резистентности к ним тревожит человечество не последние пятьдесят лет. Неспроста в своей Нобелевской речи первооткрыватель пенициллина Александр Флеминг предупреждал, что к использованию антибиотиков нужно подходить серьезно.

Так же, как и момент открытия антибиотиков человечеством на несколько миллиардов лет отсрочен от изначального их появления у бактерий, так и история использования человеком антибиотиков началась задолго до их официального открытия. И речь идет не о предшественниках Александра Флеминга, живших в 19 веке, а о совсем далеких временах.

Использование антибиотиков в древности

Еще в Древнем Египте плесневелый хлеб использовали для дезинфекции порезов (видео 1). Хлеб с плесневыми грибками в лечебных целях применяли и в других странах и, видимо, вообще во многих древних цивилизациях. Например, в Древней Сербии, Китае и Индии для предотвращения развития инфекций его прикладывали к ранам. Судя по всему, жители этих стран независимо друг от друга пришли к выводу о целебных свойствах плесени и использовали ее для лечения ран и воспалительных процессов на коже. Древние египтяне прикладывали к гнойникам на коже головы корки плесневелого пшеничного хлеба и считали, что использование этих средств поможет умилостивить духов или богов, ответственных за болезни и страдания.

Видео 1. Причины появления плесени, ее вред и польза, а также применение в медицине и перспективы использования в будущем

Жители Древнего Египта для лечения ран использовали не только хлеб с плесенью, но и самостоятельно изготовленные мази. Есть информация о том, что примерно в 1550 г. до н.э. они готовили смесь из свиного сала и меда, которую наносили на раны и перевязывали специальной тканью. Такие мази обладали некоторым антибактериальным эффектом в том числе благодаря содержащейся в меде перекиси водорода, . Египтяне не были первопроходцами в использовании меда - первым упоминанием о его целебных свойствах считают запись на шумерской табличке, датируемую 2100–2000 гг. до н.э., где говорится, что мед можно использовать как лекарство и мазь. И Аристотель также отмечал, что мед хорош для лечения ран .

В процессе исследования костей мумий древних нубийцев, живших на территории современного Судана, ученые обнаружили в них большую концентрацию тетрациклина . Возраст мумий составлял примерно 2500 лет, и, скорее всего, высокие концентрации антибиотика в костях не могли появиться случайно. Даже в останках четырехлетнего ребенка его количество была очень высоко. Ученые предполагают, что эти нубийцы на протяжении длительного времени потребляли тетрациклин. Скорее всего, его источником были бактерии Streptomyces или другие актиномицеты, содержащиеся в зернах растений, из которых древние нубийцы делали пиво.

В борьбе с инфекциями люди по всему миру использовали и растения. Сложно понять, когда именно некоторые из них начинали применять, из-за отсутствия письменных или других материальных свидетельств. Некоторые растения использовали потому, что человек методом проб и ошибок узнавал об их противовоспалительных свойствах. Другие растения использовали в кулинарии, и вместе со вкусовыми свойствами они обладали и антимикробным действием.

Так обстоит дело с луком и чесноком. Эти растения с давних пор использовали в приготовлении пищи и медицине. Об антимикробных свойствах чеснока знали еще в Китае и Индии . А не так давно ученые выяснили, что народная медицина не зря использовала чеснок - его экстракты угнетают Bacillus subtilis , Escherichia coli и Klebsiella pneumonia .

В Корее издревле для лечения желудочно-кишечных инфекций, вызываемых сальмонеллой, используют лимонник китайский Schisandra chinensis . Уже в наши дни, после проверки действия его экстракта на эту бактерию, оказалось, что лимонник действительно обладает антибактериальным действием . Или, к примеру, на присутствие антибактериальных веществ проверили специи, которые широко используются по всему миру. Получилось, что душица, гвоздика, розмарин, сельдерей и шалфей угнетают такие патогенные микроорганизмы, как Staphylococcus aureus , Pseudomonas fluorescens и Listeria innocua . На территории Евразии народы часто заготавливали ягоды и, естественно, использовали их в том числе и в лечении. Научные исследования подтвердили, что некоторые ягоды обладают антимикробной активностью. Фенолы, особенно эллаготанины, содержащиеся в плодах морошки и малины, ингибируют рост кишечных патогенных микроорганизмов.

Бактерии как оружие

Заболевания, вызываемые патогенными микроорганизмами, еще с давних времен использовали для нанесения противнику вреда с минимальными собственными затратами.

Поначалу открытие Флеминга не использовалось для лечения пациентов и продолжало свою жизнь исключительно за дверями лаборатории. К тому же, как сообщали современники Флеминга, он не был хорошим оратором и не мог убедить общественность в полезности и важности пенициллина. Вторым рождением этого антибиотика можно назвать его переоткрытие учеными из Великобритании Эрнстом Чейном и Говардом Флори в 1940–1941 гг.

В СССР тоже использовали пенициллин, причем если в Великобритании применяли не особенно производительный штамм, то советский микробиолог Зинаида Ермольева в 1942 году обнаружила таковой и даже сумела наладить производство антибиотика в условиях войны . Наиболее активным штаммом был Penicillium crustosum , и поэтому поначалу выделенный антибиотик называли пенициллин-крустозин. Его использовали на одном из фронтов во время Великой Отечественной войны для профилактики послеоперационных осложнений и лечения ран .

Зинаида Ермольева написала небольшую брошюру, в которой рассказала о том, как в СССР был открыт пенициллин-крустозин и как происходил поиск других антибиотиков: «Биологически активные вещества » .

В Европе пенициллин тоже использовали для лечения военных, причем после того, как этот антибиотик начали применять в медицине, он оставался привилегией исключительно военных . Но после пожара 28 ноября 1942 года в ночном клубе Бостона пенициллин стали применять и для лечения гражданских пациентов. У всех пострадавших были ожоги разной степени сложности, и в то время такие пациенты зачастую умирали от бактериальных инфекций, вызываемых, например, стафилококками. Компания Merck & Co. отправила пенициллин в госпитали, где содержались пострадавшие при этом пожаре, и успех лечения поставил пенициллин в центр внимания общественности. К 1946 году он стал широко использоваться в клинической практике.

Доступным для общественности пенициллин оставался вплоть до середины 50-х годов XX века. Естественно, находясь в неконтролируемом доступе, этот антибиотик зачастую использовался неуместно. Есть даже примеры пациентов, которые считали, что пенициллин - чудо-средство от всех человеческих болезней, и применяли его даже для «лечения» того, что ему по природе своей не способно поддаться. Но в 1946 году в одном из американских госпиталей заметили, что 14% взятых от больных пациентов штаммов стафилококка были устойчивы к пенициллину. А в конце 1940-х этот же госпиталь сообщил, что процент резистентных штаммов вырос до 59%. Интересно заметить, что первые сведения о том, что к пенициллину возникает устойчивость, появились в 1940 году - еще до того, как антибиотик стали активно использовать .

До открытия в 1928 году пенициллина, были, конечно, и открытия других антибиотиков. На рубеже XIX–XX веков заметили, что голубой пигмент бактерии Bacillus pyocyaneus способен убивать множество патогенных бактерий, таких как холерный вибрион, стафилококки, стрептококки, пневмококки. Он был назван пиоционазой, но открытие не послужило основой для разработки препарата, потому что вещество было токсично и нестабильно.

Первым коммерчески доступным антибиотиком стал препарат «Пронтосил », который разработал немецкий бактериолог Герхард Домагк в 1930-х годах . Есть документальные свидетельства, что первым вылеченным человеком оказалась его собственная дочь, которая долго страдала от заболевания, вызванного стрептококками. В результате лечения она выздоровела всего за несколько дней. Сульфаниламидные препараты, к которым относится и «Пронтосил», широко использовали во время Второй мировой войны страны антигитлеровской коалиции для предотвращения развития инфекций.

Вскоре после открытия пенициллина, в 1943 году, Альберт Шац, молодой сотрудник в лаборатории Зельмана Ваксмана , выделил из почвенной бактерии Streptomyces griseus вещество, обладающее противомикробной активностью. Этот антибиотик, названный стрептомицином, оказался активным против многих распространенных в то время инфекций, в том числе туберкулеза и чумы.

И все же, примерно до 1970-х годов никто серьезно не задумывался о развитии резистентности к антибиотикам. Затем были замечены два случая заболевания гонореей и бактериальным менингитом, когда бактерия, устойчивая к лечению пенициллином или антибиотиками пенициллинового ряда, вызывала смерть пациента. Эти события ознаменовали момент , когда с десятилетиями удачного лечения заболеваний было покончено.

Надо понимать, что бактерии - это живые системы, поэтому они изменчивы и со временем способны выработать резистентность к любому антибактериальному препарату (рис. 2). Например, к линезолиду бактерии не могли выработать устойчивость на протяжении 50 лет, но все-таки сумели приспособиться и жить в его присутствии . Вероятность развития антибиотикорезистентности в одном поколении бактерий составляет 1:100 млн. К действию антибиотиков они приспосабливаются по-разному. Это может быть усиление клеточной стенки, которую, к примеру, использует Burkholderia multivorans , вызывающая пневмонию у людей с иммунодефицитами . Некоторые бактерии, такие как Campylobacter jejuni , которая вызывает энтероколит, очень эффективно «выкачивают» антибиотики из клеток при помощи специализированных белковых насосов , и поэтому антибиотик не успевает подействовать.

Подробнее о способах и механизмах приспособления микроорганизмов к антибиотикам мы уже писали: «Эволюция наперегонки, или почему антибиотики перестают работать » . А на сайте проекта онлайн-образования Coursera есть полезный курс про антибиотикорезистентность Antimicrobial resistance - theory and methods . В нем достаточно подробно рассказывается об антибиотиках, механизмах устойчивости к ним и путях распространения резистентности.

Первый случай возникновения метициллинустойчивого золотистого стафилококка (MRSA) зафиксировали в Великобритании в 1961 году, а в США - немного позднее, в 1968-м . Про золотистого стафилококка мы чуть подробнее поговорим дальше, но в контексте скорости выработки у него резистентности стоит отметить, что в 1958 году против этой бактерии стали использовать антибиотик ванкомицин . Он был способен работать с тем штаммами, которые не поддавались воздействию метициллина . И до конца 1980-х годов считалось, что к нему резистентность должна вырабатываться дольше или вообще не вырабатываться. Однако в 1979 и 1983 годах, по прошествии всего пары десятков лет, в разных частях мира были зафиксированы случаи устойчивости и к ванкомицину .

Похожий тренд соблюдался и для других бактерий, а некоторые оказались способными выработать резистентность вообще за год. Но кто-то приспосабливался немного медленнее, например, в 1980-х годах только 3–5% S. pneumonia были устойчивы к пенициллину, а в 1998 году - уже 34%.

XXI век - «кризис инноваций»

За последние 20 лет многие большие фармкомпании - например, Pfizer, Eli Lilly and Company и Bristol-Myers Squibb - сократили число разработок или вообще закрыли проекты по созданию новых антибиотиков. Это можно объяснить не только тем, что стало сложнее искать новые вещества (потому что все, которые было легко найти, уже нашли), но и потому что есть другие востребованные и более прибыльные области, например, создание лекарств для лечения онкологических заболеваний или депрессии.

Тем не менее, время от времени то один, то другой коллектив ученых или компания сообщает, что они открыли новый антибиотик, и заявляет, что «вот он уж точно победит все бактерии/некоторые бактерии/определенный штамм и спасет мир». После этого зачастую ничего не происходит, и такие высказывания вызывают у общественности только скепсис. Ведь помимо тестирования антибиотика на бактериях в чашке Петри, нужно провести испытания предполагаемого вещества на животных, а затем и на людях. Это занимает много времени, таит в себе немало подводных камней, и обычно на одной из этих фаз открытие «чудесного антибиотика» сменяется закрытием.

Для того чтобы найти новые антибиотики, применяют различные методы: как классической микробиологии, так и более новые - сравнительной геномики, молекулярной генетики, комбинаторной химии, структурной биологии. Некоторые предлагают отойти от этих «привычных» методов и обратиться к знаниям, накопленным на протяжении истории человечества. Например, в одной из книг Британской библиотеки ученые заметили рецепт бальзама от глазных инфекций, и им стало интересно, на что он способен сейчас. Рецепт датировался X веком, поэтому вопрос - будет работать или нет? - был действительно интригующим. Ученые взяли именно те ингредиенты, которые были указаны, смешали в нужных пропорциях и проверили на метициллинрезистентном золотистом стафилококке (MRSA). К удивлению исследователей, более 90% бактерий были убиты этим бальзамом. Но важно заметить, что такой эффект наблюдался только при совместном использовании всех ингредиентов , .

Действительно, порой антибиотики природного происхождения работают не хуже современных, но их состав настолько сложен и зависит от многих факторов, что быть точно уверенным в каком-то определенном результате затруднительно. Также, невозможно сказать, замедляется ли скорость выработки устойчивости к ним или нет. Поэтому их не рекомендуют использовать как замену основной терапии, а как дополнение под строгим контролем врачей .

Проблемы резистентности - примеры болезней

Невозможно дать полную картину резистентности микроорганизмов к антибиотикам, потому как эта тема многогранна и, несмотря на несколько поутихший интерес со стороны фармкомпаний, достаточно активно исследуется. Соответственно, очень быстро появляется информация о все новых и новых случаях устойчивости к антибиотикам. Поэтому мы ограничимся лишь несколькими примерами для того, чтобы хотя бы поверхностно показать картину происходящего (рис. 3).

Туберкулез: риск в современном мире

Туберкулез особенно распространен в Центральной Азии, Восточной Европе и России, и то, что у туберкулезных микробов (Mycobacterium tuberculosis ) возникает устойчивость не только к определенным антибиотикам, но и к их комбинациям, должно вызывать тревогу.

У пациентов с ВИЧ из-за пониженного иммунитета нередко возникают оппортунистические инфекции, вызываемые микроорганизмами, которые в норме могут без вреда присутствовать в организме человека. Одной из них является туберкулез, который к тому же отмечен как основная причина смерти ВИЧ-положительных пациентов по всему миру. О распространенности туберкулеза по регионам мира можно судить из статистики - у пациентов с ВИЧ, заболевших туберкулезом, если они проживают в Восточной Европе, риск умереть в 4 раза выше, чем если бы они жили в Западной Европе или даже Латинской Америке. Конечно, стоит отметить, что на эту цифру влияет то, насколько в медицинской практике региона принято проводить тесты на восприимчивость пациентов к лекарствам. Это позволяет применять антибиотики только при необходимости.

За ситуацией с туберкулезом наблюдает и ВОЗ. В 2017 году она выпустила доклад о выживаемости при туберкулезе и его мониторинге в Европе. Существует стратегия ВОЗ по ликвидации туберкулеза , и поэтому пристальное внимание обращается на регионы с высоким риском заражения этим заболеванием.

Туберкулез унес жизни таких мыслителей прошлого, как немецкий писатель Франц Кафка и норвежский математик Н.Х. Абель. Однако это заболевание вызывает тревогу и сегодня, и при попытке взглянуть в будущее. Поэтому и на общественном, и на государственном уровнях стоит прислушиваться к стратегии ВОЗ и стараться снизить риски заражения туберкулезом.

В докладе ВОЗ подчеркнуто, что с 2000 года фиксируется меньше случаев заражения туберкулезом: в период с 2006 по 2015 годы число случаев уменьшалось на 5,4% в год, а в 2015 уменьшилось на 3,3%. Тем не менее, несмотря на такой тренд, ВОЗ призывает с вниманием относиться к проблеме антибиотикорезистентности Mycobacterium tuberculosis, и, используя методы гигиены и постоянный мониторинг населения, уменьшать число случаев инфицирования.

Устойчивая гонорея

Масштабы резистентности других бактерий

Примерно 50 лет назад начали появляться штаммы золотистого стафилококка, устойчивые к антибиотику метициллину (MRSA). Инфекции, вызванные метициллинрезистентным золотистым стафилококком, ассоциированы с бóльшим количеством смертей, чем инфекции, вызванные метициллинчувствительным стафилококком (MSSA). Большинство из MRSA также устойчиво и к другим антибиотикам. В настоящее время они распространены и в Европе, и в Азии, и в обеих Америках, и в Тихоокеанском регионе . Эти бактерии чаще других становятся устойчивыми к антибиотикам и в США убивают 12 тысяч людей за год . Есть даже факт, что в США MRSA в год уносит больше жизней, чем ВИЧ/СПИД, болезнь Паркинсона, эмфизема легких и убийства вместе взятые , .

В период с 2005 по 2011 год стали фиксировать меньше случаев заражения MRSA как госпитальной инфекцией. Это связано с тем, что в медицинских учреждениях взяли под строгий контроль соблюдение гигиенических и санитарных норм. Но в общей популяции такой тренд, к сожалению, не сохраняется.

Энтерококки, устойчивые к действию антибиотика ванкомицина - большая беда. Они не так широко распространены на планете, по сравнению с MRSA, но в США каждый год фиксируется около 66 тысяч случаев заражения Enterococcus faecium и, реже, E. faecalis . Они являются причиной большого спектра заболеваний и особенно среди пациентов медицинских учреждений, то есть они - причина госпитальных инфекций. При заражении энтерококком около трети случаев приходится на штаммы, устойчивые к ванкомицину.

Пневмококк Streptococcus pneumoniae является причиной бактериальной пневмонии и менингита. Чаще заболевания развиваются у людей старше 65 лет. Возникновение резистентности усложняет лечение и в итоге приводит к 1,2 миллионам случаев заболевания и 7 тысячам смертей ежегодно . Пневмококк резистентен к амоксициллину и азитромицину. К менее распространенным антибиотикам он тоже выработал устойчивость, и в 30% случаев резистентен к одному или нескольким применяемым в лечении препаратам. Надо заметить, что даже если присутствует небольшой уровень устойчивости к антибиотику, это не снижает эффективность от лечения им. Использование препарата становится бесполезным в случае, если количество резистентных бактерий превышает определенный порог. Для внебольничных пневмококковых инфекций этот порог составляет 20–30% . В последнее время стало происходить меньше случаев заражения пневмококком, потому что в 2010 году создали новую версию вакцины PCV13 , которая действует против 13 штаммов S. pneumoniae .

Пути распространения резистентности

Примерная схема показана на рисунке 4.

Пристальное внимание должно оказываться не только бактериям, которые уже развивают или развили резистентность, но и тем, которые пока не приобрели устойчивость. Потому что со временем и они могут измениться и начать вызывать более сложные формы заболеваний.

Внимание к нерезистентным бактериям можно объяснить и тем, что, даже легко поддаваясь лечению, эти бактерии играют роль в развитии инфекций у пациентов с ослабленным иммунитетом - ВИЧ-положительных, проходящих химиотерапию, недоношенных и переношенных новорожденных, у людей после операции и трансплантации . И так как этих случаев происходит достаточное количество -

  • во всем мире в 2014 году было проведено около 120 тысяч трансплантаций ;
  • только в США ежегодно проходят химиотерапию 650 тысяч человек , однако не у всех есть возможность использовать препараты для борьбы с инфекциями;
  • в США 1,1 миллиона человек - ВИЧ-положительные , в России - чуть меньше, официально 1 млн ;

То есть шанс, что со временем устойчивость появится и у тех штаммов, которые пока не вызывают опасений.

Госпитальные, или внутрибольничные, инфекции все чаще встречаются в наше время. Это те инфекции, которыми люди заражаются в больницах и других медицинских учреждениях при госпитализации и просто при посещении.

В США в 2011 году было зафиксировано более 700 тысяч заболеваний, вызываемых бактериями рода Klebsiella . Это, в основном, внутрибольничные инфекции, которые приводят к довольно обширному спектру заболеваний, таких как пневмония, сепсис, раневые инфекции. Как и в случаях со многими другими бактериями, еще с 2001 года началось массовое появление антибиотикорезистентных клебсиелл.

В одной из научных работ ученые задались целью узнать, как гены устойчивости к антибиотикам распространены среди штаммов рода Klebsiella . Они обнаружили, что 15 довольно далеких штаммов экспрессировали металло-бета-лактамазу 1 (NDM-1), которая способна разрушать почти все бета-лактамные антибиотики . Бóльшую силу эти факты обретают, если уточнить, что данные для этих бактерий (1777 геномов) получены в период с 2011 по 2015 годы от пациентов, которые находились в разных больницах с разными инфекциями, вызванными клебсиеллами.

Развитие резистентности к антибиотикам может произойти, если:

  • пациент принимает антибиотики без назначения врача;
  • пациент не следует назначенному врачом курсу приема лекарств ;
  • врач не обладает должной квалификацией;
  • пациент пренебрегает дополнительными мерами профилактики (мытье рук, продуктов питания);
  • пациент часто посещает медицинские учреждения, в которых повышена вероятность заразиться патогенными микроорганизмами;
  • пациент проходит плановые и внеплановые процедуры или операции, после которых зачастую нужно принимать антибиотики во избежание развития инфекций;
  • пациент потребляет мясную продукцию из регионов, не соблюдающих нормы по остаточному содержанию антибиотиков (например, из России или Китая);
  • у пациента снижен иммунитет из-за болезней (ВИЧ, химиотерапия при онкологических заболеваниях);
  • пациент проходит длительный курс лечения антибиотиками, например, при туберкулезе.

О том, как пациенты самостоятельно уменьшают дозу антибиотика, можно прочитать в статье «Приверженность к приему лекарственных средств и пути ее повышения при бактериальных инфекциях » . Недавно британские ученые высказали достаточно спорное мнение о том, что не обязательно проходить весь курс лечения антибиотиками . Американские врачи, однако, на это мнение отреагировали с большим скепсисом .

Настоящее (влияние на экономику) и будущее

Проблема резистентности бактерий к антибиотикам охватывает сразу несколько сфер человеческой жизни . В первую очередь, это, конечно, экономика. По разным подсчетам, сумма, которую тратит государство на лечение одного пациента с устойчивой к антибиотикам инфекцией, колеблется от $18 500 до $29 000. Эта цифра подсчитана для США, но, пожалуй, ее можно использовать и как средний ориентир по другим странам, чтобы понимать масштаб явления. Такая сумма уходит на одного пациента, но если подсчитать по всем, то оказывается, что суммарно к общему счету, который государство тратит за год на здравоохранение, нужно добавлять $20 000 000 000 . И это помимо $35 000 000 000 социальных расходов. В 2006 году из-за двух наиболее распространенных госпитальных инфекций, в результате которых у людей развивался сепсис и пневмония, умерли 50 тысяч людей. Это обошлось системе здравоохранения США в сумму, превышающую $8 000 000 000.

Ранее мы уже писали про сегодняшнюю ситуацию с антибиотикорезистентностью и о стратегиях по ее предотвращению: «Противостояние с резистентными бактериями: наши поражения, победы и планы на будущее » .

Если антибиотики первой и второй линий не работают, то приходится либо увеличивать дозы в надежде на то, что они сработают, либо использовать антибиотики следующей линии. И в том, и в другом случае высока вероятность повышенной токсичности препарата и побочных действий. К тому же, большая доза или новый препарат будут, скорее всего, стоить дороже предыдущего лечения. Это влияет на сумму, которую затрачивают на лечение государство и сам пациент. А также на срок нахождения пациента в больнице или на больничном, число посещений врача и экономические потери от того, что работник не трудится. Большее количество дней на больничном - это не пустые слова. Действительно, пациента с заболеванием, вызванным резистентным микроорганизмом, в среднем приходится лечить 12,7 дней, по сравнению с 6,4 для обычной болезни .

Кроме причин, которые непосредственно влияют на экономику - траты на лекарства, на оплату больничных и время нахождения в больнице, - есть еще и немного завуалированные. Это те причины, которые влияют на качество жизни людей, у которых обнаружены антибиотикорезистентные инфекции. Некоторые пациенты - школьники или студенты - не могут в полной мере посещать уроки, и поэтому у них возможны отставание в учебном процессе и психологическая деморализация. У пациентов, которые проходят курсы сильных антибиотиков, из-за побочных эффектов могут развиваться хронические заболевания. Помимо самих пациентов, заболевание морально угнетает их родственников и окружение, а некоторые инфекции настолько опасны, что заболевших приходится содержать в отдельной палате, где они зачастую не могут пообщаться с близкими. Также существование госпитальных инфекций и риск ими заразиться не позволяют расслабиться при прохождении курса лечения. Согласно статистике, около 2 миллионов американцев ежегодно заражаются госпитальными инфекциями, которые в итоге уносят 99 тысяч жизней. Чаще всего это происходит из-за заражения микроорганизмами, устойчивыми к антибиотикам . Важно подчеркнуть, что кроме перечисленных выше и, несомненно, важных экономических потерь, качество жизни у людей тоже сильно страдает.

Прогнозы на будущее разнятся (видео 2). Одни пессимистически указывают на то, что к 2030–2040 годам кумулятивные финансовые потери составят 100 триллионов долларов , что равняется среднегодовому убытку в 3 триллиона долларов. Для сравнения - весь годовой бюджет США лишь на 0,7 триллиона превышает эту цифру . Количество смертей от заболеваний, вызванных резистентными микроорганизмами, по оценке ВОЗ, к 2030–2040 годам приблизится к 11–14 миллионам и превысит смертность от рака.

Видео 2. Лекция Мэрин Маккены на TED-2015 - What do we do when antibiotics don’t work any more?

Неутешительны и перспективы использования антибиотиков в кормах сельскохозяйственных животных (видео 3). В исследовании, опубликованном в журнале PNAS , подсчитали, что в 2010 году во всем мире в кормá было добавлено более 63 000 тонн антибиотиков . И это - только по скромным оценкам. Ожидается, что к 2030 году указанная цифра возрастет на 67%, но, что должно особенно встревожить, она удвоится в Бразилии, Индии, Китае, Южной Африке и России. Понятно, что, раз объемы добавляемых антибиотиков увеличатся, то и расход средств на них тоже увеличится. Существует мнение , что цель добавления их в корм - совсем не улучшение здоровья животных, а ускорение роста. Это позволяет быстро выращивать животных, получать прибыль от продаж и снова выращивать новых. Но при возрастающей антибиотикорезистентности, придется добавлять либо бóльшие объемы антибиотика, либо создавать комбинации из них. В любом из указанных случаев, затраты фермеров и государства, которое нередко их субсидирует, на эти препараты возрастут. При этом продажи сельскохозяйственной продукции могут даже снизиться из-за смертности животных, вызванной отсутствием действенного антибиотика или побочными эффектами нового. А также из-за страха со стороны населения, которое не хочет потреблять продукцию с этим «усиленным» препаратом. Снижение продаж или повышение цены на продукцию может ставить фермеров в бóльшую зависимость от субсидий со стороны государства, заинтересованного в обеспечении населения продуктами первой необходимости, которые как раз и предоставляет фермер. Также, многие сельхозпроизводители из-за вышеуказанных причин могут оказаться на грани банкротства, а, следовательно, это приведет к тому, что на рынке останутся лишь крупные сельскохозяйственные компании. И, как следствие, возникнет монополия крупных компаний-гигантов. Такие процессы негативно отразятся на социально-экономическом положении любого государства.

Видео 3. BBC рассказывает о том, насколько может быть опасным развитие антибиотикорезистентности у сельскохозяйственных животных

По всему миру активно развиваются направления науки, связанные с определением причин генетических заболеваний и их лечения, мы с интересом наблюдаем за тем, что происходит с методами, которые помогут человечеству «избавиться от вредных мутаций и стать здоровыми», как любят упоминать поклонники методов пренатального скрининга, CRISPR-Cas9 и только начинающего развиваться метода генетической модификации эмбрионов . Но все это может быть понапрасну, если мы окажемся неспособны противостоять заболеваниям, вызываемым резистентными микроорганизмами. Необходимы разработки, которые позволят преодолеть проблему резистентности, иначе всему миру несдобровать.

Возможные изменения в обычной жизни людей в ближайшие годы:

  • продажа антибиотиков только по рецепту (исключительно для лечения болезней, угрожающих жизни, а не для профилактики банальных «простуд»);
  • экспресс-тесты на степень устойчивости микроорганизма к антибиотикам;
  • рекомендации по лечению, подтвержденные вторым мнением или искусственным интеллектом;
  • дистанционное диагностирование и лечение без посещения мест скопления больных людей (в том числе мест продажи лекарств);
  • проверка на наличие антибиотикорезистентных бактерий до проведения операций;
  • запрет проведения косметических процедур без надлежащей проверки;
  • сокращение потребления мяса и повышение его цены из-за удорожания ведения хозяйства без привычных антибиотиков;
  • увеличение смертности людей в группе риска;
  • увеличение смертности от туберкулеза в странах из группы риска (Россия, Индия, Китай);
  • ограниченное распространение антибиотиков последнего поколения по миру для замедления развития устойчивости к ним;
  • дискриминация в доступе к таким антибиотикам по финансовому статусу и по месту проживания.

Заключение

Меньше века прошло с начала масштабного использования антибиотиков. Вместе с тем, меньше века заняло у нас, чтобы результат этого достиг грандиозных масштабов . Угроза антибиотикорезистентности вышла на глобальный уровень, и было бы глупо отрицать, что именно мы своими же усилиями создали себе такого врага. Сегодня каждый из нас ощущает на себе последствия уже возникшей устойчивости и находящуюся в процессе развития устойчивость, когда получаем от врача выписанные антибиотики, принадлежащие не к первой линии, а второй или даже последней. Сейчас существуют варианты решения этой проблемы, но самих проблем - не меньше. Предпринимаемые нами действия по борьбе с быстро развивающими устойчивость бактериями напоминают гонку. Что будет дальше - покажет время.

Об этой проблеме рассказывает в лекции «Кризис медицины и биологические угрозы » Николай Дурманов, экс-глава «РУСАДА ».

И время, действительно, расставляет все по своим местам. Начинают появляться средства, позволяющие улучшить работу уже существующих антибиотиков, научные группы ученых (пока что ученых, но вдруг эта тенденция вновь вернется и к фармкомпаниям) без устали трудятся над созданием и проверкой новых антибиотиков. Обо всем этом можно прочитать и воспрянуть духом во второй статье цикла.

«Супербаг Солюшенс» - спонсор спецпроекта по антибиотикорезистентности

Компания Superbug Solutions UK Ltd. («Супербаг Солюшенс» , Великобритания) - одна из ведущих компаний, занимающихся уникальными исследованиями и разработками решений в области создания высокоэффективных бинарных антимикробных препаратов нового поколения. В июне 2017 года «Супербаг Солюшенс» получила сертификат от крупнейшей в истории Европейского Союза программы по исследованиям и инновациям «Горизонт 2020», удостоверяющий, что технологии и разработки компании являются прорывными в истории развития исследований по расширению возможностей применения антибиотиков.

Сейчас многие и не задумываются, что изобретатель антибиотиков является спасителем множества жизней. А ведь еще достаточно недавно большинство заболеваний и ран могли стать причиной очень длительного и часто безуспешного лечения. От простой пневмонии умирало 30% больных. Сейчас летальный исход возможен только в 1% случаев воспаления легких. И это стало возможно благодаря антибиотикам.

Когда же эти лекарства появились в аптеках и благодаря кому?

Первые шаги к изобретению

На данный момент широко известно, в каком веке изобрели антибиотики. Не возникает вопросов также относительно того, кто изобрел их. Однако, как и в случае с антибиотиками, мы знаем только имя человека, который максимально приблизился к открытию и сделал его. Обычно одной проблемой занимается большое количество ученых в разных странах.

Первым шагом к изобретению препарата стало открытие антибиоза – уничтожение одних микроорганизмов другими.

Врачи из Российской империи Манассеин и Полотебнов занимались изучением свойств плесени. Одним из их выводов их работы, стало утверждение о способности плесени бороться с различными бактериями. Они применяли препараты на основе плесени для лечения заболеваний кожи.

Затем русский ученый Мечников заметил способность бактерий, которые содержатся в кисломолочных продуктах, благотворно влиять на пищеварительный тракт.

Наиболее близок к открытию нового лекарства был французский врач по фамилии Дюшен. Он заметил, что арабы используют плесень для лечения ран на спинах лошадей. Взяв образцы плесени, врач проводил опыты по лечению морских свинок от кишечной инфекции и получил положительные результаты. Написанная им диссертация не получила отклика в научном сообществе того времени.

Так выглядит краткая история пути к изобретению антибиотиков. На самом деле многим древним народам было известно о способности плесени положительно влиять на лечение ран. Однако отсутствие необходимых методов и техники сделало невозможным появление чистого лекарственного средства на тот момент. Первый антибиотик смог появиться только в 20 веке.

Непосредственное открытие антибиотиков

Во многом изобретение антибиотиков было результатом случайности и стечения обстоятельств. Однако подобное может быть сказано и про многие другие открытия.

Александр Флеминг занимался изучением бактериальных инфекций. Особенно актуальной эта работа стала в период Первой Мировой войны. Развитие военной техники привело к появлению большего количества раненых. В ранах возникала инфекция, и это приводило к ампутациям и смертям. Именно Флеминг определил возбудителя заражений – стрептококк. Также он доказал, что традиционные для медицины антисептики не способны уничтожить бактериальную инфекцию полностью.

Однозначный ответ на вопрос, в каком году изобрели антибиотик, существует. Однако этому предшествовали 2 немаловажных открытия.

В 1922 году Флеминг открыл лизоцим – один из компонентов нашей слюны, который имеет способность уничтожать бактерии. Во время своих исследований ученый добавил свою слюну в чашку Петри, в которой были посеяны бактерии.

В 1928 году Флеминг посеял стафилококк в чашках Петри и оставил их на продолжительное время. По случайности в посевы попали частицы плесневого грибка. Когда через время ученый вернулся к работе с посеянными бактериями стафилококка, он обнаружил, что плесень разрослась и уничтожила бактерии. Такой эффект производила не сама плесень, а прозрачная жидкость, вырабатываемая в процессе ее жизнедеятельности. Это вещество ученый назвал в честь плесневых грибов (Penicillium) – пенициллин.

Далее ученый продолжил исследования пенициллина. Он выяснил, что вещество эффективно воздействует на бактерии, которые сейчас называются грамположительными. Однако, также он способен уничтожать возбудитель гонореи, хотя тот и относится к грамотрицательным микроорганизмам.

Исследования продолжались много лет. Но ученый не обладал необходимыми для получения чистого вещества познаниями в химии. Только выделенное чистое вещество можно было бы применять в медицинских целях. Опыты продолжались до 1940 года. В этом году исследованием пенициллина занялись ученые Флори и Чейн. Они смогли выделить вещество и получить препарат, пригодный для начала клинических исследований. Первые успешные результаты лечения человека были получены в 1941 году. Этот же год и считается датой появления антибиотиков.

История открытия антибиотиков была достаточно длинной. И только в период Второй мировой войны появилась возможность его массового производства. Флеминг был британским ученым, но производить лекарство на территории Великобритании в то время было невозможно – велись боевые действия. Поэтому первые образцы препарата были выпущены на территории Соединенных Штатов Америки. Часть лекарства использовалась для внутренних нужд страны, а другая часть отправлялась в Европу, в эпицентр боевых действий для спасения раненых солдат.

После окончания войны, в 1945 году, Флеминг, а также продолжатели его дела Говард Флори и Эрнст Чейн получили Нобелевскую премию за заслуги в области медицины и физиологии.

Как и в случае многих других открытий, ответить на вопрос «кто придумал антибиотик» сложно. Это стало результатом совместной работы многих ученых. Каждый из них внес необходимый вклад в процесс изобретения лекарства, без которого трудно представить современную медицину.

Важность этого изобретения

Трудно поспорить, что открытие пенициллина и изобретение антибиотиков – одно из важнейших событий 20 века. Его массовое производство открыло новую веху в истории медицины. Не так много лет назад обычная пневмония грозила летальным исходом. После того, как Флеминг изобрел антибиотик, многие болезни перестали быть смертным приговором.

Тесно связаны антибиотики и история Второй мировой войны. Благодаря этим препаратам удалось предотвратить множество смертей солдат. После ранений у многих из них развивались тяжелые инфекционные болезни, которые могли приводить к летальному исходу или ампутации конечностей. Новые препараты смогли существенно ускорить их лечение и минимизировать человеческие потери.

После произошедшей революции в медицине, некоторые ожидали, что бактерии могут быть уничтожены полностью и навсегда. Однако сам изобретатель современных антибиотиков знал об особенности бактерий – феноменальной способности приспосабливаться к изменяющимся условиям. На данный момент медицина имеет механизмы борьбы с микроорганизмами, но и у них есть свои способы защиты от препаратов. Поэтому полностью уничтожить их нельзя (по крайней мере сейчас), более того, они постоянно видоизменяются и появляются новые виды бактерий.

Проблема резистентности

Бактерии – первые живые организмы на планете, и на протяжении тысячелетий они выработали механизмы, благодаря которым выживают. После того, как пенициллин был открыт, стало известно о способности бактерий адаптироваться к нему, мутировать. В таком случае антибиотик становится бесполезен.

Бактерии размножаются достаточно быстро, и передают всю генетическую информацию следующей колонии. Таким образом, следующее поколение бактерии будет иметь механизм «самозащиты» от лекарства. К примеру, антибиотик метициллин был изобретен в 1960 году. Первые случаи резистентности к нему были зарегистрированы в 1962 году. На тот момент лечению не поддавалось 2% из всех случаев заболеваний, при которых назначают метициллин. К 1995 году он стал неэффективен в 22% клинических случаев, а через 20 лет – бактерии оказались резистентны в 63% случаев. Первый антибиотик был получен в 1941 году, а в 1948 – появились устойчивые бактерии. Обычно устойчивость к лекарству впервые проявляется через несколько лет после выпуска препарата на рынок. Именно поэтому регулярно появляются новые препараты.

Помимо природного механизма «самозащиты», бактерии приобретают резистентность к препаратам благодаря неверному использованию антибиотиков самими людьми. Причины, по которым эти лекарства становятся менее эффективны:

  1. Самоназначение антибиотиков. Многие не знают истинного назначения этих препаратов, и принимают их или небольшом недомогании. Также бывает, что врач однажды выписал один вид препарата, и теперь при болезни пациент принимает тот же самый препарат.
  2. Несоблюдение курса лечения. Часто пациент отменяет препарат, когда начинает чувствовать себя лучше. Но для полного уничтожения бактерий нужно принимать таблетки в течение того времени, которое указано в инструкции.
  3. Содержание антибиотиков в продуктах питания. Открытие антибиотиков позволило вылечить многие болезни. Сейчас эти препараты широко используются фермерами для лечения скота, и уничтожения вредителей, которые уничтожают урожай. Таким образом, в мясо и растительные культуры попадает антибиотик.

Плюсы и минусы

Можно однозначно сказать – изобретение современных антибиотиков было необходимо, и позволило спасти жизни многих людей. Однако, как и любого изобретения, у этих лекарств есть положительные и отрицательные стороны.

Положительный аспект создания антибиотических средств:

  • болезни, которые ранее считались смертельными, оканчиваются летальным исходом во много раз реже;
  • когда изобрели эти препараты, продолжительность жизни людей увеличилась (в некоторых странах и регионах в 2-3 раза);
  • новорожденные и младенцы умирают в шесть раз реже;
  • смертность женщин после родов сократилась в 8 раз;
  • сократилось количество эпидемий, и количество пострадавших от них.

После того, как 1-й препарат антибиотик был открыт, стало известно и негативной стороне этого открытия. На время создания лекарства на основе пенициллина, существовали бактерии, которые к нему устойчивы. Поэтому ученым пришлось создавать несколько других видов медикаментов. Однако постепенно микроорганизмы выработали устойчивость к «агрессору». Из-за этого появилась необходимость создавать новые и новые препараты, которые будут способны уничтожать мутировавших возбудителей болезней. Таким образом, ежегодно появляются новые виды антибиотиков, и новые виды бактерий, которые к ним устойчивы. Некоторые исследователи говорят, что на данный момент примерно одна десятая возбудителей инфекционных болезней имеет устойчивость к антибактериальным препаратам.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Народной медицине давно были известны некоторые способы применения в качестве лечебных средств микроорганизмов или продуктов их обмена, однако причина их лечебного действия в то время оставалась неизвестной. Например, для лечения некоторых язв, кишечных расстройств и других заболеваний в народной медицине применялся заплесневевший хлеб.

В 1871 —1872 гг. появились работы русских исследователей В. А. Манассеина и А. Г. Полотебнова, в которых сообщалось о практическом использовании зеленой плесени для заживления кожных язв у человека. Первые сведения об антагонизме бактерий были обнародованы основоположником микробиологии Луи Пастером в 1877 г. Он обратил внимание на подавление развития возбудителя сибирской язвы некоторыми сапрофитными бактериями и высказал мысль о возможности практического использования этого явления.

С именем русского ученого И. И. Мечникова (1894) связано научно обоснованное практическое использование антагонизма между энтеробактериями, вызывающими кишечные расстройства, и молочнокислыми микроорганизмами, в частности болгарской палочкой («мечниковская простокваша»), для лечения кишечных заболеваний человека.

В 1896 году Р. Гозио из культурной жидкости Penicillium brevicompactum выделил кристаллическое соединение - микофеноловую кислоту, подавляющее рост бактерий сибирской язвы.

Эммирих и Лоу в 1899 году сообщили об антибиотическом веществе, образуемом Pseudomonas pyocyanea, они назвали его пиоцианазой; препарат использовался в качестве лечебного фактора как местный антисептик.

Русский врач Э. Гартье (1905) применил кисломолочные продукты, приготовленные на заквасках, содержащих ацидофильную палочку, для лечения кишечных расстройств.

Пауль Эрлих (1854-1915) в результате многочисленных опытов синтезировал в 1912 году мышьяковистый препарат - сальварсан, убивающий in vitro возбудителя сифилиса. В 30-х годах прошлого столетия в результате химического синтеза были получены новые органические соединения - сульфамиды, среди которых красный стрептоцид (пронтозил) был первым эффективным препаратом, оказавшим терапевтическое действие при тяжёлых стрептококковых инфекциях.

В 1910-1913 годах O. Black и U. Alsberg выделили из гриба рода Penicillium пеницилловую кислоту, обладающую антимикробными свойствами.

В 1929 году А. Флемингом был открыт новый препарат пенициллин, который только в 1940 году удалось выделить в кристаллическом виде.

В 1937 году в нашей стране был синтезирован сульфидин - соединение, близкое к пронтозилу. Открытие сульфамидных препаратов и применение их в медицинской практике составило известную эпоху в химиотерапии многих инфекционных заболеваний, в том числе сепсиса, менингита, пневмонии, рожистого воспаления, гонореи и некоторых других.

В 1939 г. Н. А. Красильников и А. И. Кореняко из культуры фиолетового актиномицета Actinomyces violaceus, выделенного ими из почвы, получили первый антибиотик актиномицетного происхождения — мицетин — и изучили условия биосинтеза и применения мицетина в клинике.

А. Флеминг, изучая стрептококков, выращивал их на питательной среде в чашках Петри. На одной из чашек вместе со стафилококками выросла колония плесневого гриба, вокруг которой стафилококки не развивались. Заинтересовавшись этим явлением, Флеминг выделил культуру гриба, определенную затем как Penicilliurn notatum. Выделить вещество, подавляющее рост стафилококков, удалось только в 1940 г. оксфордской группе исследователей. Полученный антибиотик был назван пенициллином.

С открытия пенициллина началась новая эра в лечении инфекционных болезней — эра применения антибиотиков. В короткий срок возникла и развилась новая отрасль промышленности, производящая антибиотики в крупных масштабах. Теперь вопросы микробного антагонизма приобрели важное практическое значение и работы по выявлению новых микроорганизмов — продуцентов антибиотиков стали носить целенаправленный характер.

В СССР получением пенициллина успешно занималась группа исследователей под руководством 3. В. Ермольевой. В 1942г. был выработан отечественный препарат пенициллина. Ваксманом и Вудрафом из культуры Actinomyces antibioticus был выделен антибиотик актиномицин, который впоследствии стал использоваться как противораковое средство. Первым антибиотиком актиномицетного происхождения, нашедшим широкое применение особенно при лечении туберкулеза, был стрептомицин, открытый в 1944 г. Ваксманом с сотрудниками. К противотуберкулезным антибиотикам относятся также открытые позже виомицин (флоримицин), циклосерин, канамицин, рифамицин.

В последующие годы интенсивные поиски новых соединений привели к открытию ряда других терапевтически ценных антибиотиков, нашедших широкое применение в медицине. К ним относятся препараты с широким спектром антимикробного действия. Они подавляют рост не только грамположительных бактерий, которые более чувствительны к действию антибиотиков (возбудители пневмонии, различных нагноений, сибирской язвы, столбняка, дифтерии, туберкулеза), но и грамотрицательных микроорганизмов, которые более устойчивы к действию антибиотиков (возбудители брюшного тифа, дизентерии, холеры, бруцеллеза, туляремии), а также риккетсий (возбудители сыпного тифа) и крупных вирусов (возбудители пситтакоза, лимфогрануломатоза, трахомы и др.). К таким антибиотикам относятся хлорамфеникол (левомицетин), хлортетрациклин (биомицин), окситетрациклин (террамицин), тетрациклин, неомицин (колимицин, мицерин), канамицин, паромомицин (мономицин) и др. Кроме того, в распоряжении врачей в настоящее время имеется группа антибиотиков резерва, активных в отношении устойчивых к пенициллину грамположительных болезнетворных микроорганизмов, а также противогрибные антибиотики (нистатин, гризеофульвин, амфотерицин В, леворин).

Термин «антибиотики», или «антибиотические вещества», предложенный в 1942 г. Ваксманом, первоначально обозначал химические соединения, образуемые микроорганизмами, которые обладают способностью подавлять рост и даже разрушать бактерии и другие микроорганизмы. Это определение, как оказалось впоследствии, не совсем точно, так как в число антибиотиков нужно было бы включить вещества микробного происхождения, которые оказывают не специфическое, а общее антисептическое или консервирующее действие на живые клетки. К таким веществам относятся, в частности, спирты, органические кислоты, перекиси, смолы и др. К тому же антибактериальное действие эти соединения оказывают только в относительно высоких концентрациях. К антибиотикам следует относить только такие вещества, которые в незначительных количествах проявляют специфическое (избирательное) действие на отдельные звенья обмена веществ микробной клетки. Позже в тканях высших растений и животных были найдены соединения, способные в малых количествах специфически подавлять рост микробов. Более того, было показано, что некоторые сходные антибиотики (например, цитринин) могут синтезироваться как микробами, так и высшими растениями. Таким образом, круг организмов-продуцентов антибиотических веществ расширился, что также должно было найти отражение в термине «антибиотики». Установление структуры молекул многих антибиотиков позволило осуществить химический синтез ряда этих соединений без участия организмов-продуцентов.

Дальнейший этап развития химии антибиотиков — изменение (трансформация) молекул этих соединений для получения производных, обладающих рядом преимуществ по сравнению с исходными препаратами. Такое направление исследований объясняется в основном двумя причинами: необходимостью снижения токсичности антибиотиков при сохранении их антибактериального действия; борьбой с инфекционными заболеваниями, вызываемыми устойчивыми к широко применявшимся антибиотикам формами патогенных микроорганизмов. Преимущества производных антибиотиков по сравнению с исходными проявляются также и в изменении растворимости, удлинении срока циркуляции в организме больного и т. д.

Получить производные антибиотиков можно с помощью как химического, так и биологического синтеза. Известен и комбинированный способ получения препаратов. В этом случае ядро молекулы антибиотика формируется при биосинтезе с помощью соответствующих микроорганизмов-продуцентов, а «достройка» молекулы осуществляется методом химического синтеза. Полученные этим способом антибиотики называются полусинтетическими. Так были получены и нашли широкое применение в клинике весьма эффективные полусинтетические пенициллины (метициллин, оксациллин, ампициллин, карбенициллин) и цефалоспорины (цефалотин, цефалоридин) с новыми по сравнению с природными антибиотиками ценными терапевтическими свойствами.

Все эти данные, накопленные в процессе становления и развития науки об антибиотиках, потребовали уточнения термина «антибиотики». В настоящее время антибиотиками следует называть химические соединения, образуемые различными микроорганизмами в процессе их жизнедеятельности, а также производные этих соединений, обладающие способностью в незначительных концентрациях избирательно подавлять рост микроорганизмов или вызывать их гибель. Вполне вероятно, что и эта формулировка с дальнейшим прогрессом антибиотической науки будет уточняться.

В первые годы после открытия антибиотиков их получали с использованием метода поверхностной ферментации. Этот метод заключался в том, что продуцент выращивали на поверхности питательной среды в плоских бутылях (матрацах). Чтобы получить сколько-нибудь заметные количества антибиотика, требовались тысячи матрацев, каждый из которых после слива культуралыюй жидкости необходимо было мыть, стерилизовать, заполнять свежей средой, засевать продуцентом и инкубировать в термостатах. Малопроизводительный способ поверхностной ферментации (поверхностного биосинтеза) не мог удовлетворить потребностей в антибиотиках. В связи с этим был разработан новый высокопроизводительный метод глубинного культивирования (глубинной ферментации) микроорганизмов — продуцентов антибиотиков. Это позволило в короткий срок создать и развить новую отрасль промышленности, выпускающую антибиотики в больших количествах.

Метод глубинного культивирования отличается от предыдущего тем, что микроорганизмы-продуценты выращивают не на поверхности питательной среды, а во всей ее толще. Выращивание продуцентов ведут в специальных чанах (ферментаторах), емкость которых может превышать 50 м3. Ферментаторы снабжены приспособлениями для продувания воздуха через питательную среду и мешалками. Развитие микроорганизмов-продуцентов в ферментаторах происходит при непрерывном перемешивании питательной среды и подаче кислорода (воздуха). При глубинном выращивании во много раз по сравнению с выращиванием продуцента на поверхности среды увеличивается накопление биомассы (из расчета на единицу объема питательной среды), а значит, и возрастает содержание антибиотика в каждом миллилитре культуральной жидкости, т. е. повышается ее антибиотическая активность.

Производственная схема биосинтеза любых антибиотиков включает следующие основные стадии: ферментацию, выделение антибиотика и его химическую очистку, сушку антибиотика и приготовление лекарственной формы. Для осуществления ферментации — биохимического процесса переработки сырья — необходимо иметь питательную среду (сырье) и микроорганизмы, перерабатывающие это сырье. Питательные среды подбирают с таким расчетом, чтобы они обеспечивали хороший рост и развитие продуцента и способствовали максимально возможному биосинтезу антибиотика.

Поднятию производительности антибиотической промышленности, помимо внедрения в практику глубинной ферментации, в огромной степени способствовало использование для биосинтеза новых высокопроизводительных штаммов-продуцентов. Для их получения были разработаны специальные методы селекции. Вследствие большой вариабельности микроорганизмов-продуцентов и быстрой утраты ими исходных свойств (особенно уровня антибиотической активности) необходимо было разработать методы хранения микроорганизмов-продуцентов и поддержания активности, а также способы приготовления посевного материала для засева огромных объемов питательной среды в ферментерах.

В 70-х годах ежегодно описывалось более 300 новых антибиотиков

В настоящее время число известных антибиотиков приближается к 3000, однако в клинической практике используется всего около 50.

Введение ………………………….………………………………………….3

    1. История антибиотиков……………………………………………… …....4
    2. Общая характеристика антибиотиков……………………………………13

Заключение………………………………………………… …………………23

Список литературы

Введение

Антибиотики – это все лекарственные препараты, подавляющие жизнедеятельность возбудителей инфекционных заболеваний, таких как грибки, бактерии и простейшие.

Когда впервые были созданы антибиотики, их считали " волшебными пулями", которые должны были радикально изменить лечение инфекционных заболеваний. Однако сейчас эксперты с беспокойством отмечают, что золотой век антибиотиков закончился.

Антибиотики занимают особое место в современной медицине. Они являются объектом изучения различных биологических и химических дисциплин. Наука об антибиотиках развивается бурно. Если это развитие началось с микробиологии, то теперь проблему изучают не только микробиологи, но и фармакологи, биохимики, химики, радиобиологи, врачи всех специальностей.

За последние 35 лет открыто около ста антибиотиков с различным спектром действия, однако, в клинике применяется ограниченное число препаратов. Это объясняется главным образом тем, что большинство антибиотиков не удовлетворяют требованиям практической медицины.

Изучение строения антибиотиков позволило подойти к раскрытию механизма их действия, особенно благодаря огромным успехам в области молекулярной биологии.

Цель работы: изучить историю антибиотиков.

Задачи: 1) ознакомиться с историей появления антибиотиков.

2) рассмотреть общую характеристику антибиотиков.

    I) История появления антибиотиков

Идея использования микробов против микробов и наблюдения о микробном антагонизме относятся к временам Луи Пастера и И.И. Мечникова. В частности, Мечников писал, что «в процессе борьбы друг с другом микробы вырабатывают специфические вещества как орудия защиты и нападения». А чем иным, как не орудием нападения одних микробов на другие, оказались антибиотики? Современные антибиотики – пенициллин, стрептомицин и др. – получены как продукт жизнедеятельности различных – бактерий, плесеней и актиномицетов. Именно эти вещества действуют губительно, либо задерживают рост и размножение болезнетворных микробов.
Еще в конце XIX в. профессор В.А. Манассеин описал противомикробное действие зеленой плесени пенициллиум, а А.Г. Полотебнов с успехом применял зеленую плесень для лечения гнойных ран и сифилитических язв. Кстати, известно, что индейцы майя использовали зеленую плесень для лечения ран. При гнойных заболеваниях рекомендовал плесень и выдающийся арабский врач Абу Али Ибн Сина (Авиценна).
Эра антибиотиков в современном значении этого слова началась с замечательного открытия – пенициллина Александром Флемингом. В 1929 г. английский ученый Александр Флеминг опубликовал статью, принесшую ему всемирную известность: он сообщил о новом, выделенном из колоний плесени, веществе, которое он назвал пенициллином. С этого момента и начинается «биография» антибиотиков, которые по праву считаются «лекарством века». В статье указывалось на высокую чувствительность к пенициллину стафилококков, стрептококков, пневмококков. В меньшей степени к пенициллину были чувствительны возбудитель сибиреязвенной болезни и бацилла дифтерии, а совсем не восприимчивы – бацилла брюшного тифа, холерный вибрион и другие. Однако А. Флеминг не сообщил о виде плесени, из которой он выделил пенициллин. Уточнение сделал известный миколог Шарль Вестлинг.
Но этот пенициллин, открытый Флемингом, имел ряд недостатков. В жидком состоянии он быстро терял свою активность. Из– за слабой концентрации его приходилось вводить в больших количествах, что было очень болезненно. Пенициллин Флеминга содержал в себе также много побочных и далеко не безразличных белковых веществ, попавших из бульона, на котором выращивалась плесень пенициллиум. В результате всего этого использование пенициллина для лечения больных затормозилось на несколько лет. Только в 1939 г. врачи медицинской школы Оксфордского университета приступили к изучению возможности лечения пенициллином инфекционных заболеваний. Г. Флори, Б. Хаийн, Б. Чейн и другие специалисты составили план подробного клинического испытания пенициллина. Вспоминая этот период работы, профессор Флори писал: «Все мы работали над пенициллином с утра до вечера. Засыпали с мыслью о пенициллине, и единственным нашим желанием было разгадать его тайну». Эта напряженная работа принесла свои результаты. Летом 1940 года первые белые мыши, экспериментально зараженные стрептококками в лабораториях Оксфордского университета, были спасены от смерти благодаря пенициллину. Полученные результаты помогли клиницистам проверить пенициллин на людях. 12 февраля 1941 года Э. Абразам ввел новый препарат безнадежным больным, погибающим от заражения крови. К сожалению, после нескольких дней улучшения больные все же скончались. Однако трагическая развязка наступила не в результате применения пенициллина, а из–за его отсутствия в нужном количестве. С конца 30–х. гг. XX века работами Н.А. Красильникова, изучавшего распространение в природе актиномицетов, и последующими работами З.В. Ермольевой, Г.Ф. Гаузе и других ученых, исследовавших антибактериальные свойства почвенных микроорганизмов, было положено начало развитию производства антибиотиков. Отечественный препарат пенициллин был получен в 1942 году в лаборатории З.В. Ермольевой. В годы Великой Отечественной войны тысячи раненых и больных были спасены.
Победное шествие пенициллина и его признание во всем мире открыло новую эру в медицине – эру антибиотиков. Открытие пенициллина стимулировало поиски и выделение новых активных антибиотиков. Так, в 1942 году был открыт грамицидин (Г.Ф. Гаузе и др.). В конце 1944 года С. Ваксман со своим коллективом проводит экспериментальную проверку стрептомицина, который вскоре стал соперничать с пенициллином. Стрептомицин оказался высокоэффективным препаратом для лечения туберкулеза. Этим объясняется мощное развитие промышленности, выпускающий данный антибиотик. С. Ваксман впервые ввел термин «антибиотик», подразумевая под этим химическое вещество, образуемое микроорганизмами, обладающее способностью подавлять рост или даже разрушать бактерии и другие микроорганизмы. В дальнейшем это определение расширялось. В 1947 году был открыт и выдержал экзамен на эффективность еще один антибиотик пенициллинового ряда – хлоромицетин. Его успешно применяли в борьбе с брюшным тифом, пневмонией, лихорадкой Ку. В 1948–1950 гг. были введены ауромицин и терамицин, клиническое использование которых началось в 1952 году. Они оказались активны при многих инфекциях, включая бруцеллез, туляремию. В 1949 году был открыт неомицин – антибиотик с широким аспектом действия. В 1952 году был открыт эритомицин. Таким образом, ежегодно арсенал антибиотиков увеличивался. Появились стрептомицин, биомицин, альбомицин, левомицетин, синтомицин, тетрациклин, террамицин, эритромицин, колимицин, мицерин, иманин, экмолин и ряд других. Одни из них обладают направленным действием на определенные микробы или их группы, другие обладают более широким спектром антимикробного действия на различные микроорганизмы.
Выделяются сотни тысяч культур микроорганизмов, получаются десятки тысяч препаратов. Однако все они требуют тщательного изучения.
В истории создания антибиотиков много непредвиденных и даже трагических случаев. Даже открытие пенициллина сопровождалось, помимо успехов, и некоторыми разочарованиями. Так, вскоре была обнаружена пенициллиназа – вещество, способное нейтрализовать пенициллин. Это объясняло, почему многие бактерии невосприимчивы к пенициллину (колибацилла и микроб брюшного тифа, например, содержат в своей структуре пенициллиназу). Вслед за этим последовали и другие наблюдения, поколебавшие веру во всепобеждающую силу пенициллина. Было установлено, что определенные микробы приобретают со временем невосприимчивость к пенициллину. Накопленные факты подтвердили мнение о существовании двух видов невосприимчивости к антибиотикам: естественной (структурной) и приобретенной. Стало известно также, что ряд микробов обладает способностью вырабатывать такого же характера защитные вещества и против стрептомицина – фермент стрептомициназу. За этим, казалось бы, должен был последовать вывод о том, что пенициллин и стрептомицин становятся малоэффективными лечебными средствами и что их применять не следует. Как ни важны оказались выявленные факты, как ни грозны они были для антибиотиков, но ученые таких поспешных выводов не сделали. Наоборот, были сделаны два важных вывода: первый – искать пути и методы подавления этих защитных свойств микробов, а второй – еще глубже изучать это свойство самозащиты. Помимо ферментов, некоторые микробы защищаются витаминами и аминокислотами.
Большим недостатком длительного лечения пенициллином и другими антибиотиками было нарушение физиологического равновесия между микро– и макроорганизмом. Антибиотик не выбирает, не делает разницы, но подавляет или убивает любой организм, попадающий в сферу его деятельности. В результате уничтожаются, например, микробы, содействующие пищеварению, защищающие слизистые оболочки; в результате человек начинает страдать от микроскопических грибков. При использовании антибиотиков нужна большая осторожность. Необходимо соблюдать точные дозировки. После испытания каждого антибиотика его направляют в Комитет по антибиотикам, который решает вопрос о возможности применения его на практике.
Продолжают создаваться и совершенствоваться антибиотики, обладающие продленным действием в организме. Другим направлением в совершенствовании антибиотиков является создание таких форм антибиотиков, чтобы вводить их не шприцем, а принимать парентерально. Были созданы таблетки феноксиметилпенициллина, которые и предназначены для приема внутрь. Новый препарат успешно прошел экспериментальные и клинические испытания. Он обладает рядом очень ценных качеств, из которых наиболее важным является то, что он не боится соляной кислоты желудочного сока. Именно это обеспечивает успех его изготовления и применения. Растворяясь и всасываясь в кровь, он оказывает свое лечебное действие. Успех с таблетками феноксиметилпенициллина оправдал надежды ученых. Арсенал антибиотиков в таблетках пополнился рядом других, обладающих широким спектром действия на различных микробов. Большой известностью в настоящее время пользуются тетрациклин, террамицин, биомицин. Внутрь вводятся левомицетин, синтомицин и другие антибиотики. Так был получен полусинтетический препарат ампициллин, задерживающий рост не только стафилококков, но и микробов, вызывающих брюшной тиф, паратиф, дизентерию. Все это оказалось новым и большим событием в учении об антибиотиках. Обычные пенициллины на тифозно–паратифозно– дизентерийную группу не действуют. Теперь открываются новые перспективы для более широкого применения пенициллина на практике.
Большим и важным событием в науке явилось также получение новых препаратов стрептомицина – пасомицина и стрептосалюзида для лечения туберкулеза. Оказывается, этот антибиотик может потерять свою силу в отношении туберкулезных палочек, которые приобрели устойчивость к нему. Несомненным достижением явилось создание во Всесоюзном научно–исследовательском институте антибиотиков дибиомицина. Он оказался эффективным для лечения трахомы. Большую роль в этом открытии играли исследования З.В. Ермольевой. Наука движется вперед, и поиски антибиотиков против вирусных болезней остаются одной из актуальнейших задач науки. В 1957 г. английский ученый Айзеке сообщил о получении им вещества, которое он назвал интерфероном. Это вещество образуется в клетках организма в результате проникновения в них вирусов. Проведено изучение лечебных свойств интерферона. Опыты показали, что наиболее чувствительны к его действию вирусы гриппа, энцефалита, полиомиелита, оспо–вакцины. При этом он абсолютно безвреден для организма. Были созданы жидкие антибиотики в виде суспензий. Эта жидкая форма антибиотиков благодаря своим высокоактивным лечебным свойствам, а также приятному запаху и сладкому вкусу нашла широкое применение в педиатрии при лечении различных болезней. Они настолько удобны для применения, что в виде капель их дают даже новорожденным детям. В эпоху антибиотиков онкологи не могли не задуматься над возможностью использовать их при лечении рака. Не найдутся ли среди микробов продуценты противораковых антибиотиков? Эта задача гораздо более сложная и трудная, чем изыскание противомикробных антибиотиков, но она увлекает и волнует ученых. Большой интерес онкологов вызвали антибиотики, которые вырабатываются лучистыми грибами – актиномицетами. Можно назвать ряд антибиотиков, которые тщательно изучаются в эксперименте на животных, а отдельные – для лечения раковой болезни у людей. Актиномицин, актиноксантин, плюрамицин, саркомицин, ауратин – с этими антибиотиками связана важная полоса в поисках активных, но безвредных препаратов. К сожалению, многие из полученных противораковых антибиотиков этому требованию не отвечают.
Впереди – надежды на успех. Ярко и образно об этих надеждах сказала Зинаида Виссарионовна Ермольева: «Мы мечтаем победить и рак. Когда–то несбыточной казалась мечта о покорении космического пространства, но она сбылась. Сбудутся и эти мечты!» Итак, наиболее эффективными антибиотиками оказались те из них, которые являются продуктами жизнедеятельности актиномицетов, плесеней, бактерий и других микроорганизмов. Поиски новых микробов – продуцентов антибиотиков – продолжаются широким фронтом во всем мире. Еще в 1909 г. профессор Павел Николаевич Лащенков открыл замечательное свойство свежего белка куриных яиц убивать многих микробов. В процессе гибели происходило растворение (лизис) их. В 1922 г. это интересное биологическое явление глубоко изучил английский ученый Александр Флеминг и назвал вещество, растворяющее микробов, лизоцим. У нас в стране лизоцим был широко изучен З.В. Ермольевой с сотрудниками. Открытие лизоцима вызвало большой интерес у биологов, микробиологов, фармакологов и врачей–лечебников разных специальностей. Экспериментаторов интересовали природа, химический состав, особенности действия лизоцима на микробов. Особенно важным был вопрос о том, на какие болезнетворные микробы лизоцим действует и при каких инфекционных болезнях можно его применять с лечебной целью. Лизоцим в разной концентрации обнаружен в слезах, слюне, мокроте, селезенке, почках, печени, коже, слизистых оболочках кишок и других органах человека и животных. Кроме того, лизоцим обнаружен в различных овощах и фруктах (хрен, репа, редька, капуста) и даже в цветах (примула). Лизоцим обнаружен также и у различных микробов.
Лизоцим применяется для лечения при некоторых инфекционных заболеваниях глаз, носа, полости рта и др. Широкая популярность антибиотиков привела к тому, что они нередко стали чем–то вроде средства «домашнего лечения» и применяются без назначения врача. Конечно, такое применение нередко опасно и приводит к нежелательным реакциям и осложнениям. Неосторожное применение больших доз антибиотиков может вызвать более сильные реакции и осложнения. Не надо забывать, что антибиотики могут повреждать микробные клетки, в результате чего в организм поступают ядовитые продукты распада микробов, вызывающие отравление. Часто страдают при этом сердечно–сосудистая и нервная системы, нарушается нормальная деятельность почек, печени. Антибиотики обладают мощным действием на многие микробы, но, конечно, не на все. Антибиотиков универсального действия пока нет. Ученые стремятся к получению антибиотиков так называемого широкого спектра действия. Это значит, что такие антибиотики должны действовать на большое количество различных микробов, и такие антибиотики созданы. К их числу относятся стрептомицин, тетрациклин, хлорамфеникол и др. Но именно потому, что они вызывают гибель массы разнообразных микробов (но не всех), оставшиеся становятся агрессивными и могут причинить вред. В то же время за ними большое будущее. В настоящее время антибиотики стали применяться и для лечения животных и птиц. Так многие инфекционные заболевания птиц благодаря антибиотикам перестали быть бичом в птицеводстве. В животноводстве и птицеводстве антибиотики стали применяться как стимуляторы роста. В сочетании с некоторыми витаминами, прибавленными к корму цыплят, индюшат, поросят и других животных, антибиотики способствуют усилению роста и увеличению их веса. Ученые с полным основанием могут утверждать, что, помимо стимуляции роста, антибиотики окажут и профилактическое действие в отношении заболеваний птиц. Известны работы З.В. Ермольевой и ее сотрудников, отражающие тот факт, что среди птиц, телят и поросят заболеваемость и смертность, например от кишечных инфекций (поносов), резко были снижены при применении антибиотиков.
Будем надеяться, что за антибиотиками будет победа и над другими заболеваниями.

    II. Общая характеристика антибиотиков

Антибиотики (от анти... и греч. bĺоs - жизнь), вещества биологического происхождения, синтезируемые микроорганизмами и подавляющие рост бактерий и других микробов, а также вирусов и клеток. Многие антибиотики способны убивать микробов. Иногда к антибиотикам относят также антибактериальные вещества, извлекаемые из растительных и животных тканей. Каждый антибиотик характеризуется специфическим избирательным действием только на определённые виды микробов. В связи с этим различают антибиотики с широким и узким спектром действия. Первые подавляют разнообразных микробов [например, тетрациклин действует как на окрашивающихся по методу Грама (грамположительных), так и на неокрашивающихся (грамотрицательных) бактерий, а также на риккетсий]; вторые - лишь микробов какой-либо одной группы (например, эритромицин и олеандомицин подавляют лишь грамположительные бактерии). В связи с избирательным характером действия некоторые антибиотики способны подавлять жизнедеятельность болезнетворных микроорганизмов в концентрациях, не повреждающих клеток организма хозяина, и поэтому их применяют для лечения различных инфекционных заболеваний человека, животных и растений. Микроорганизмы, образующие антибиотики, являются антагонистами окружающих их микробов-конкурентов, принадлежащих к другим видам, и при помощи антибиотика подавляют их рост. Мысль об использовании явления антагонизма микробов для подавления болезнетворных бактерий принадлежит И. И. Мечникову , который предложил употреблять молочнокислые бактерии, обитающие в простокваше, для подавления вредных гнилостных бактерий, находящихся в кишечнике человека. Описано около 2000 различных антибиотиков из культур микроорганизмов, но лишь немногие из них (около 40) могут служить лечебными препаратами, остальные по тем или иным причинам не обладают химиотерапевтическим действием.

Антибиотики можно классифицировать по их происхождению (из грибов, бактерий, актиномицетов и др.), химической природе или по механизму действия.

Антибиотики из грибов. Важнейшее значение имеют антибиотики группы пенициллина , образуемые многими расами Penicillium notatum, P. chrysogenum и другими видами плесневых грибов. Пенициллин подавляет рост стафилококков в разведении 1 на 80 млн. и малотоксичен для человека и животных. Он разрушается энзимом пенициллиназой, образуемой некоторыми бактериями. Из молекулы пенициллина было получено её "ядро" (6-аминопенициллановая кислота), к которому затем химически присоединили различные радикалы. Так, были созданы новые "полусинтетические" пенициллины (метициллин, ампициллин и др.), не разрушаемые ценициллиназой и подавляющие некоторые штаммы бактерий, устойчивые к природному пенициллину. Другой антибиотик - цефалоспорин С - образуется грибом Cephalosporium. Он обладает близким к пенициллину химическим строением, но имеет несколько более широкий спектр действия и подавляет жизнедеятельность не только грамположительных, но и некоторых грамотрицательных бактерий. Из "ядра" молекулы цефалоспорина (7-аминоцефалоспорановая кислота) были получены его полусинтетические производные (например, цефалоридин), которые нашли применение в медицинской практике. Антибиотик гризеофульвин был выделен из культур Penicillium griseofulvum и других плесеней. Он подавляет рост патогенных грибков и широко используется в медицине.

Антибиотик из актиномицетов весьма разнообразны по химической природе, механизму действия и лечебным свойствам. Ещё в 1939 советские микробиологи Н. А. Красильников и А. И. Кореняко описали антибиотик мицетин, образуемый одним из актиномицетов. Первым антибиотиком из актиномицетов, получившим применение в медицине, был стрептомицин , подавляющий наряду с грамположительными бактериями и грамотрицательными палочки туляремии, чумы, дизентерии, брюшного тифа, а также туберкулёзную палочку. Молекула стрептомицина состоит из стрептидина (дигуанидиновое производное мезоинозита), соединённого глюкозидной связью со стрептобиозамином (дисахаридом, содержащим стрентозу и метилглюкозамин). Стрептомицин относится к антибиотикам группы водорастворимых органических оснований, к которой принадлежат также антибиотики аминоглюкозиды (неомицин , мономицин, канамицин и гентамицин), обладающие широким спектром действия. Часто используют в медицинской практике антибиотики группы тетрациклина , например хлортетрациклин (синонимы: ауреомицин, биомицин) и окситетрациклин (синоним: террамицин). Они обладают широким спектром действия и наряду с бактериями подавляют риккетсий (например, возбудителя сыпного тифа). Воздействуя на культуры актиномицетов, продуцентов этих антибиотиков, ионизирующей радиацией или многими химическими агентами, удалось получить мутанты , синтезирующие антибиотики с измененным строением молекулы (например, деметилхлортетрациклин). Антибиотик хлорамфеникол (синоним: левомицетин), обладающий широким спектром действия, в отличие от большинства других антибиотиков, производят в последние годы путём химического синтеза, а не биосинтеза. Другим таким исключением является противотуберкулёзный антибиотик циклосерин, который также можно получать промышленным синтезом. Остальные антибиотики производят биосинтезом. Некоторые из них (например, тетрациклин, пенициллин) могут быть получены в лаборатории химическим синтезом; однако этот путь настолько труден и нерентабелен, что не выдерживает конкуренции с биосинтезом. Значительный интерес представляют антибиотики макролиды (эритромицин, олеандомицин), подавляющие грамположительные бактерии, а также антибиотики полиены (нистатин , амфотерицин, леворин), обладающие противогрибковым действием. Антибиотик из бактерий в химическом отношении более однородны и в подавляющем большинстве случаев относятся к полипептидам . В медицине используют тиротрицин и грамицидин С из Bacillus brevis, бацитрацин из Bac. subtilis и полимиксин из Bacillus polymyxa. Низин, образуемый стрептококками, не применяют в медицине, но употребляют в пищевой промышленности в качестве антисептика, например при изготовлении консервов.

Антибиотические вещества из животных тканей. Наиболее известны среди них: лизоцим, открытый английским учёным Антибиотик Флемингом (1922); это энзим - полипептид сложного строения, который содержится в слезах, слюне, слизи носа, селезёнке, лёгких, яичном белке и др., подавляет рост сапрофитных бактерий, но слабо действует на болезнетворных микробов; интерферон - также полипептид, играющий важную роль в защите организма от вирусных инфекций; образование его в организме можно повысить с помощью специальных веществ, называемых интерфероногенами.

Антибиотики могут быть классифицированы не только по происхождению, но и разделены на ряд групп на основе химического строения их молекул. Такая классификация была предложена советскими учёными М. М. Шемякиным и А. С. Хохловым: антибиотики ациклического строения (полиены нистатин и леворин); алициклического строения; антибиотики ароматического строения; антибиотики - хиноны; антибиотики - кислородсодержащие гетероциклические соединения (гризеофульвин); антибиотики - макролиды (эритромицин, олеандомицин); антибиотики - азотсодержащие гетероциклические соединения (пенициллин); антибиотики - полипептиды или белки; антибиотики - депсипептиды.

Третья возможная классификация основана на различиях в молекулярных механизмах действия антибиотиков. Например, пенициллин и цефалоспорин избирательно подавляют образование клеточной стенки у бактерий. Ряд антибиотиков избирательно поражает на разных этапах биосинтез белка в бактериальной клетке; тетрациклины нарушают прикрепление транспортной рибонуклеиновой кислоты (РНК) к рибосомам бактерий; макролид эритромицин, как и линкомицин, выключает передвижение рибосомы по нити информационной РНК; хлорамфеникол повреждает функцию рибосомы на уровне фермента пептидилтранслоказы; стрептомицин и аминоглюкозидные антибиотики (неомицин, канамицин, мономицин и гентамицин) искажают "считывание" генетического кода на рибосомах бактерий. Другая группа антибиотиков избирательно поражает биосинтез нуклеиновых кислот в клетках также на различных этапах: актиномицин и оливомицин, вступая в связь с матрицей дезоксирибонуклеиновой кислоты (ДНК), выключают синтез информационной РНК; брунеомицин и митомицин реагируют с ДНК по типу алкилирующих соединений, а рубомицин - путём интеркаляции. Наконец, некоторые антибиотики избирательно поражают биоэнергетические процессы: грамицидин С, например, выключает окислительное фосфорилирование.

Основные группы антибиотиков

Пенициллины включает следующие лекарства: амоксициллин, ампициллин, ампициллин с сульбактамом, бензилпенициллин, клоксациллин, коамоксиклав (амоксициллин с клавулановой кислотой), флуклоксациллин, метициллин, оксациллин, феноксиметилпенициллин.

Цефалоспорины: цефаклор, цефадроксил, цефиксим, цефоперазон, цефотаксим, цефокситин, цефпиром, цефсулодин, цефтазидим, цефтизоксим, цефтриаксон, цефуроксим, цефалексин, цефалотин, цефамандол, цефазолин, цефрадин.

Пенициллины и цефалоспорины - вместе с антибиотиками монобактамом и карбапенемом - вместе известны как антибиотики бета-лактамы. Другие антибиотики бета-лактамы включают: азтреонам, имипенем (который обычно применяют в комбинации с циластатином).

Аминогликозиды: амикацин, гентамицин, канамицин, неомицин, нетилмицин, стрептомицин, тобрамицин.

Макролиды: азитромицин, кларитромицин, эритромицин, йозамицин, рокситромицин.

Линкозамиды: клиндамицин, линкомицин.

Тетрациклины: доксициклин, миноциклин, окситетрациклин, тетрациклин.

Хинолоны: налидиксовая кислота, ципрофлоксацин, эноксацин, флероксацин, норфлоксацин, офлоксацин, пефлоксацин, темафлоксацин (изъят в 1992г.).

Другие: хлорамфеникол, котримоксазол (триметоприм и сульфаметоксазол), мупироцин, тейкопланин, ванкомицин.

Существует несколько лекарственных форм антибиотиков: таблетки, сироп, растворы, свечи, капли, аэрозоли, мази и линименты. Каждая лекарственная форма имеет достоинства и недостатки.

Таблетки Недостатки

Достоинства

1. Безболезненно. Не требуется усилий (не сложно)

Сиропы Недостатки

1. Зависимость от моторики желудочно- кишечного тракта

2. Проблема точности дозировки

Достоинства

1. Удобны в применении в детской практике

Растворы Недостатки

1. Болезненно

2. Техническая сложность

Достоинства

1. Можно создать депо аппарата (под кожу)

2. 100% биодоступность (вводится внутривенно)

3. Быстрое создание максимальной концентрации в крови.

Свечи и капли Недостатки

Достоинства

Аэрозоли Недостатки

1. Не все антибиотики можно превратить в аэрозоль

Достоинства

1. Быстрое всасывание

Мази, линименты Недостатки

1. Применяются для местного лечения

Достоинства

1. Можно избежать системного воздействия на организм

Пенициллин был открыт в 1928 году. А вот в Советском Союзе люди продолжали умирать даже тогда, когда на Западе этим антибиотиком уже лечили вовсю.

Оружие против микроорганизмов

Антибиотики (от греческих слов «анти»— против и «биос» — жизнь) - вещества, избирательно подавляющие жизненные функции некоторых микроорганизмов. Первый антибиотик был случайно открыт в 1928 году английским ученым Александром Флемингом. На чашке Петри, где он выращивал для своих опытов колонию стафилококков, он обнаружил неизвестную серо-желтоватую плесень, которая уничтожила все микробы вокруг себя. Флеминг изучил загадочную плесень и вскоре выделил из нее противомикробное вещество. Он назвал его «пенициллином».

В 1939 году английские ученые Хоуард Флори и Эрнст Чейн продолжили исследования Флеминга и вскоре был налажен промышленный выпуск пенициллина. В1945 г. за заслуги перед человечеством Флеминг, Флори и Чейн были удостоены Нобелевской премии.

Панацея из плесени

В СССР долгое время закупали антибиотики за валюту по бешеным ценам и в очень ограниченном количестве, поэтому на всех их не хватало. Сталин лично поставил перед учеными задачу о разработке собственного лекарства. Для реализации этой задачи его выбор пал на знаменитого врача-микробиолога Зинаиду Виссарионовну Ермольеву. Это благодаря ей была остановлена эпидемия холеры под Сталинградом, что помогло Красной Армии выиграть Сталинградскую битву.

Много лет спустя Ермольева так вспоминала свой разговор с вождем:

«- Над чем вы сейчас работаете, товарищ Ермольева?

Я мечтаю заняться пенициллином.

Что еще за пенициллин?

Это живая вода, Иосиф Виссарионович. Да-да, самая настоящая живая вода, полученная из плесени. О пенициллине стало известно двадцать лет назад, но всерьез им так никто и не занялся. По крайней мере, у нас.

Что вы хотите?..

Я хочу найти эту плесень и приготовить препарат. Если это удастся, мы спасем тысячи, а может быть, и миллионы жизней! Особенно мне кажется это важным сейчас, когда раненые солдаты сплошь и рядом гибнут от заражения крови, гангрены и всевозможных воспалений.

Действуйте. Вас обеспечат всем необходимым».

Железная леди советской науки

Тому факту, что уже в декабре 1944 года пенициллин стали массово производить в нашей стране, мы обязаны именно Ермольевой - донской казачке, с отличием окончившей гимназию, а затем и женский медицинский институт в Ростове.

Первый образец советского антибиотика был получен ею из плесени, принесенной из бомбоубежища, находившегося неподалеку от лаборатории на улице Обуха. Опыты, которые проводила Ермольева на лабораторных животных, дали потрясающие результаты: буквально умирающие подопытные зверьки, которых перед этим заразили микробами, вызывающими тяжелые заболевания, буквально после одной инъекции пенициллина выздоравливали в короткий срок. Только после этого Ермольева приняла решение попробовать «живую воду» на людях, и вскоре пенициллин стали повсеместно применять в полевых госпиталях.

Таким образом, Ермольевой удалось спасти тысячи безнадежных больных. Современники отмечали, что эта удивительная женщина отличалась неженским «железным» характером, энергичностью и целеустремленностью. За успешную борьбу с инфекциями на Сталинградском фронте в конце 1942 года Ермольева была награждена орденом Ленина. А в 1943 году ей была присуждена Сталинская премия 1-й степени, которую она передала в Фонд обороны на закупку боевого самолета. Так в небе над родным Ростовом впервые появился знаменитый истребитель «Зинаида Ермольева».

За ними будущее

Всю дальнейшую жизнь Ермольева посвятила изучению антибиотиков. За это время она получила первые образцы таких современных антибиотиков, как стрептомицин, интерферон, бициллин, экмолин и дипасфен. А незадолго до своей кончины Зинаида Виссарионовна сказала в беседе с журналистами: «На определенном этапе пенициллин был самой настоящей живой водой, но жизнь, в том числе и жизнь бактерий, не стоит на месте, поэтому для победы над ними нужны новые, более совершенные лекарства. Создать их в максимально короткие сроки и дать людям - это то, чем денно и нощно занимаются мои ученики. Так что не удивляйтесь, если в один прекрасный день в больницах и на полках аптек появится новая живая вода, но только уже не из плесени, а из чего-то другого».

Ее слова оказались пророческими: сейчас во всем мире известно более ста видов антибиотиков. И все они, как и их «младший брат» пенициллин, служат здоровью людей. Антибиотики бывают широкого спектра (активные в отношении широкого спектра бактерий) и узкого спектра действия (эффективные в отношении лишь специфических групп микроорганизмов). Единых принципов присвоения антибиотикам названий долгое время не существовало. Но в 1965 году Международный комитет по номенклатуре антибиотиков рекомендовал следующие правила:

  • Если известна химическая структура антибиотика, название выбирают с учётом того класса соединений, к которому он относится.
  • Если структура не известна, название даётся по наименованию рода, семейства или порядка, к которому принадлежит продуцент.
  • Суффикс «мицин» присваивается только антибиотикам, синтезируемым бактериями порядка Actinomycetales.
  • Также в названии можно давать указание на спектр или способ действия.