Что означают слова "задать функцию"? Они означают: объяснить всем желающим, о какой конкретной функции идёт речь. Причём, объяснить чётко и однозначно!

Как это можно сделать? Как задать функцию?

Можно написать формулу. Можно нарисовать график. Можно составить табличку. Любой способ - это какое-то правило, по которому можно узнать значение игрека для выбранного нами значения икса. Т.е. "задать функцию" , это значит - показать закон, правило, по которому икс превращается в игрек.

Обычно, в самых различных заданиях присутствуют уже готовые функции. Они нам уже заданы. Решай себе, да решай.) Но... Чаще всего школьники (да и студенты) работают с формулами. Привыкают, понимаешь... Так привыкают, что любой элементарный вопрос, относящийся к другому способу задания функции, тотчас огорчает человека...)

Во избежание подобных случаев, имеет смысл разобраться с разными способами задания функций. Ну и, конечно, применить эти знания к "хитрым" вопросам. Это достаточно просто. Если знаете, что такое функция...)

Поехали?)

Аналитический способ задания функции.

Самый универсальный и могучий способ. Функция, заданная аналитически, это функция, которая задана формулами. Собственно, это и есть всё объяснение.) Знакомые всем (хочется верить!)) функции, например: y = 2x, или y = x 2 и т.д. и т.п. заданы именно аналитически.

К слову сказать, не всякая формула может задавать функцию. Не в каждой формуле соблюдается жёсткое условие из определения функции. А именно - на каждый икс может быть только один игрек. Например, в формуле у = ±х , для одного значения х=2, получается два значения у: +2 и -2. Нельзя этой формулой задать однозначную функцию. А с многозначными функциями в этом разделе математики, в матанализе, не работают, как правило.

Чем хорош аналитический способ задания функции? Тем, что если у вас есть формула - вы знаете про функцию всё! Вы можете составить табличку. Построить график. Исследовать эту функцию по полной программе. Точно предсказать, где и как будет вести себя эта функция. Весь матанализ стоит именно на таком способе задания функций. Скажем, взять производную от таблицы крайне затруднительно...)

Аналитический способ достаточно привычен и проблем не создаёт. Разве что некоторые разновидности этого способа, с которыми сталкиваются студенты. Я про параметрическое и неявное задание функций.) Но такие функции - в специальном уроке.

Переходим к менее привычным способам задания функции.

Табличный способ задания функции.

Как следует из названия, этот способ представляет собой простую табличку. В этой таблице каждому иксу соответствует (ставится в соответствие ) какое-то значение игрека. В первой строчке - значения аргумента. Во второй строчке - соответствующие им значения функции, например:

Таблица 1.

x - 3 - 1 0 2 3 4
y 5 2 - 4 - 1 6 5

Прошу обратить внимание! В данном примере игрек зависит от икса как попало. Я специально так придумал.) Нет никакой закономерности. Ничего страшного, так бывает. Значит, именно так я задал эту конкретную функцию. Именно так я установил правило, по которому икс превращается в игрек.

Можно составить другую табличку, в которой будет закономерность. Этой табличкой будет задана другая функция, например:

Таблица 2.

x - 3 - 1 0 2 3 4
y - 6 - 2 0 4 6 8

Уловили закономерность? Здесь все значения игрека получаются умножением икса на двойку. Вот и первый "хитрый" вопрос: можно ли функцию, заданную с помощью Таблицы 2, считать функцией у = 2х ? Подумайте пока, ответ будет ниже, в графическом способе. Там это всё очень наглядно.)

Чем хорош табличный способ задания функции? Да тем, что считать ничего не надо. Всё уже посчитано и написано в таблице.) А более ничего хорошего нет. Мы не знаем значения функции для иксов, которых нет в таблице. В этом способе такие значения икса просто не существуют. Кстати, это подсказка к хитрому вопросу.) Мы не можем узнать, как ведёт себя функция за пределами таблицы. Ничего не можем. Да и наглядность в этом способе оставляет желать лучшего... Для наглядности хорош графический способ.

Графический способ задания функции.

В данном способе функция представлена графиком. По оси абсцисс откладывается аргумент (х), а по оси ординат - значение функции (у). По графику тоже можно выбрать любой х и найти соответствующее ему значение у . График может быть любой, но... не какой попало.) Мы работаем только с однозначными функциями. В определении такой функции чётко сказано: каждому х ставится в соответствие единственный у . Один игрек, а не два, или три... Для примера, посмотрим на график окружности:

Окружность, как окружность... Почему бы ей не быть графиком функции? А давайте найдем, какой игрек будет соответствовать значению икса, например, 6? Наводим курсор на график (или касаемся рисунка на планшете), и... видим, что этому иксу соответствует два значения игрека: у=2 и у=6.

Два и шесть! Стало быть, такой график не будет графическим заданием функции. На один икс приходится два игрека. Не соответствует этот график определению функции.

Но если условие однозначности выполнено, график может быть совершенно любым. Например:

Эта самая кривулина - и есть закон, по которому можно перевести икс в игрек. Однозначный. Захотелось нам узнать значение функции для х = 4, например. Надо найти четвёрку на оси иксов и посмотреть, какой игрек соответствует этому иксу. Наводим мышку на рисунок и видим, что значение функции у для х=4 равно пяти. Какой формулой задано такое превращение икса в игрек - мы не знаем. И не надо. Графиком всё задано.

Теперь можно вернуться к "хитрому" вопросу про у=2х. Построим график этой функции. Вот он:

Разумеется, при рисовании этого графика мы не брали бесконечное множество значений х. Взяли несколько значений, посчитали у, составили табличку - и всё готово! Самые грамотные вообще всего два значения икса взяли! И правильно. Для прямой больше и не надо. Зачем лишняя работа?

Но мы совершенно точно знали, что икс может быть любым. Целым, дробным, отрицательным... Любым. Это по формуле у=2х видно. Поэтому смело соединили точки на графике сплошной линией.

Если же функция будет нам задана Таблицей 2, то значения икса нам придётся брать только из таблицы. Ибо другие иксы (и игреки) нам не даны, и взять их негде. Нет их, этих значений, в данной функции. График получится из точек. Наводим мышку на рисунок и видим график функции, заданной Таблицей 2. Значения икс-игрек на осях я не писал, разберётесь, поди, по клеточкам?)

Вот и ответ на "хитрый" вопрос. Функция, заданная Таблицей 2 и функция у=2х - разные.

Графический способ хорош своей наглядностью. Сразу видно, как ведёт себя функция, где возрастает. где убывает. По графику сразу можно узнать некоторые важные характеристики функции. А уж в теме с производной, задания с графиками - сплошь и рядом!

Вообще, аналитический и графический способы задания функции идут рука об руку. Работа с формулой помогает построить график. А график частенько подсказывает решения, которые в формуле и не заметишь... Мы с графиками дружить будем.)

Почти любой ученик знает три способа задания функции, которые мы только что рассмотрели. Но на вопрос: "А четвёртый!?" - зависает основательно.)

Такой способ есть.

Словесное описание функции.

Да-да! Функцию можно вполне однозначно задать словами. Великий и могучий русский язык на многое способен!) Скажем, функцию у=2х можно задать следующим словесным описанием: каждому действительному значению аргумента х ставится в соответствие его удвоенное значение. Вот так! Правило установлено, функция задана.

Более того, словесно можно задать функцию, которую формулой задать крайне затруднительно, а то и невозможно. Например: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х. Например, если х=3, то у=3. Если х=257, то у=2+5+7=14. И так далее. Формулой это записать проблематично. А вот табличку легко составить. И график построить. Кстати, график забавный получается...) Попробуйте.

Способ словесного описания - способ достаточно экзотичный. Но иногда встречается. Здесь же я его привёл, чтобы придать вам уверенности в неожиданных и нестандартных ситуациях. Нужно просто понимать смысл слов "функция задана..." Вот он, этот смысл:

Если есть закон однозначного соответствия между х и у - значит, есть функция. Какой закон, в какой форме он выражен - формулой, табличкой, графиком, словами, песнями, плясками - сути дела не меняет. Этот закон позволяет по значению икса определить соответствующее значение игрека. Всё.

Сейчас мы применим эти глубокие знания к некоторым нестандартным заданиям.) Как и обещано в начале урока.

Задание 1:

Функция у = f(x) задана Таблицей 1:

Таблица 1.

Найти значение функции p(4), если p(х)= f(x) - g(x)

Если вы вообще не можете понять, что к чему - прочитайте предыдущий урок "Что такое функция?" Там про такие буковки и скобочки очень понятно написано.) А если вас смущает только табличная форма, то разбираемся здесь.

Из предыдущего урока ясно, что, если, p(х) = f(x) - g(x) , то p(4) = f(4) - g(4) . Буквы f и g означают правила, по которым каждому иксу ставится в соответствие свой игрек. Для каждой буквы (f и g ) - своё правило. Которое задано соответствующей таблицей.

Значение функции f(4) определяем по Таблице 1. Это будет 5. Значение функции g(4) определяем по Таблице 2. Это будет 8. Остаётся самое трудное.)

p(4) = 5 - 8 = -3

Это правильный ответ.

Решить неравенство f(x) > 2

Вот-те раз! Надо решить неравенство, которое (в привычной форме) блистательно отсутствует! Остаётся либо бросать задание, либо включить голову. Выбираем второе и рассуждаем.)

Что значит решить неравенство? Это значит, найти все значения икса, при которых выполняется данное нам условие f(x) > 2 . Т.е. все значения функции (у ) должны быть больше двойки. А у нас на графике игрек всякий есть... И больше двойки есть, и меньше... А давайте, для наглядности, по этой двойке границу проведём! Наводим курсор на рисунок и видим эту границу.

Строго говоря, эта граница есть график фукции у=2, но это не суть важно. Важно то, что сейчас на графике очень хорошо видно, где, при каких иксах, значения функции, т.е. у, больше двойки. Они больше при х> 3. При х> 3 вся наша функция проходит выше границы у=2. Вот и всё решение. Но выключать голову ещё рано!) Надо ещё ответ записать...

На графике видно, что наша функция не простирается влево и вправо на бесконечность. Об этом точки на концах графика говорят. Кончается там функция. Стало быть, в нашем неравенстве все иксы, которые уходят за пределы функции смысла не имеют. Для функции этих иксов не существует. А мы, вообще-то, неравенство для функции решаем...

Правильный ответ будет:

3 < х 6

Или, в другой форме:

х(3; 6]

Теперь всё, как надо. Тройка не включается в ответ, т.к. исходное неравенство строгое. А шестёрка включается, т.к. и функция при шестёрке существует, и условие неравенства выполняется. Мы успешно решили неравенство, которого (в привычной форме) нету...

Вот так некоторые знания и элементарная логика спасают в нестандартных случаях.)

Одними из классических определений понятия «функция» считаются определения на базе соответствий. Приведем ряд таких определений.

Определение 1

Зависимость, при которой каждому значению независимой переменной соответствует единственное значение зависимой переменной, называется функцией .

Определение 2

Пусть даны два непустых множества $X$ и $Y$. Соответствие $f$, которое каждому $x\in X$ сопоставляет один и только один $y\in Y$ Называется функцией ($f:X → Y$).

Определение 3

Пусть $M$ и $N$ - два произвольных числовых множества. Говорят, что на $M$ определена функция $f$, принимающая значения из $N$, если каждому элементу $x\in X$ поставлен в соответствие один и только один элемент из $N$.

Следующее определение дается через понятие переменной величины. Переменной величиной называется величина, которая в данном исследовании принимает различные числовые значения.

Определение 4

Пусть $M$ - множество значений переменной величины $x$. Тогда, сели каждому значению $x\in M$ соответствует одно определенное значение другой переменной величины $y$ есть функция величины $x$, определенной на множестве $M$.

Определение 5

Пусть $X$ и $Y$ - некоторые числовые множества. Функцией называется множество $f$ упорядоченных пар чисел $(x,\ y)$ таких, что $x\in X$, $y\in Y$ и каждое $x$ входит в одну и только одну пару этого множества, а каждое $y$ входит, по крайней мере, в одну пару .

Определение 6

Всякое множество $f=\{\left(x,\ y\right)\}$ упорядоченных пар $\left(x,\ y\right)$ таких, что для любых пар $\left(x",\ y"\right)\in f$ и $\left(x"",\ y""\right)\in f$ из условия $y"≠ y""$ следует, что $x"≠x""$ называется функцией или отображением .

Определение 7

Функция $f:X → Y$ - это множество $f$ упорядоченных пар $\left(x,\ y\right)\in X\times Y$, таких, что для любого элемента $x\in X$ существует единственный элемент $y\in Y$ такой, что $\left(x,\ y\right)\in f$, то есть функция -- кортеж объектов $\left(f,\ X,\ Y\right)$.

В этих определениях

$x$ - независимая переменная.

$y$ - зависимая переменная.

Все возможные значения переменной $x$ называется областью определения функции , а все возможные значения переменной $y$ называется областью значения функции.

Аналитический способ задания функции

Для этого способа нам понадобится понятие аналитического выражения.

Определение 8

Аналитическим выражением называется произведение всех возможных математических операций над какими-либо числами и переменными.

Аналитическим способом задания функции и является её задание с помощью аналитического выражения.

Пример 1

$y=x^2+7x-3$, $y=\frac{x+5}{x+2}$, $y=cos5x$.

Плюсы:

  1. С помощью формул мы можем определить значение функции для любого определенного значения переменной $x$;
  2. Функции, заданные таким способом можно изучать с помощью аппарата математического анализа.

Минусы:

  1. Малая наглядность.
  2. Иногда приходится производить очень громоздкие вычисления.

Табличный способ задания функции

Данный способ задания состоит в том, что для нескольких значений независимой переменной выписываются значения зависимой переменной. Все это вносится в таблицу.

Пример 2

Рисунок 1.

Плюс: Для любого значения независимой переменной $x$, которая внесена в таблицу, сразу узнается соответствующее значение функции $y$.

Минусы:

  1. Чаще всего, нет полного задания функции;
  2. Малая наглядность.

Одними из классических определений понятия «функция» считаются определения на базе соответствий. Приведем ряд таких определений.

Определение 1

Зависимость, при которой каждому значению независимой переменной соответствует единственное значение зависимой переменной, называется функцией .

Определение 2

Пусть даны два непустых множества $X$ и $Y$. Соответствие $f$, которое каждому $x\in X$ сопоставляет один и только один $y\in Y$ Называется функцией ($f:X → Y$).

Определение 3

Пусть $M$ и $N$ - два произвольных числовых множества. Говорят, что на $M$ определена функция $f$, принимающая значения из $N$, если каждому элементу $x\in X$ поставлен в соответствие один и только один элемент из $N$.

Следующее определение дается через понятие переменной величины. Переменной величиной называется величина, которая в данном исследовании принимает различные числовые значения.

Определение 4

Пусть $M$ - множество значений переменной величины $x$. Тогда, сели каждому значению $x\in M$ соответствует одно определенное значение другой переменной величины $y$ есть функция величины $x$, определенной на множестве $M$.

Определение 5

Пусть $X$ и $Y$ - некоторые числовые множества. Функцией называется множество $f$ упорядоченных пар чисел $(x,\ y)$ таких, что $x\in X$, $y\in Y$ и каждое $x$ входит в одну и только одну пару этого множества, а каждое $y$ входит, по крайней мере, в одну пару .

Определение 6

Всякое множество $f=\{\left(x,\ y\right)\}$ упорядоченных пар $\left(x,\ y\right)$ таких, что для любых пар $\left(x",\ y"\right)\in f$ и $\left(x"",\ y""\right)\in f$ из условия $y"≠ y""$ следует, что $x"≠x""$ называется функцией или отображением .

Определение 7

Функция $f:X → Y$ - это множество $f$ упорядоченных пар $\left(x,\ y\right)\in X\times Y$, таких, что для любого элемента $x\in X$ существует единственный элемент $y\in Y$ такой, что $\left(x,\ y\right)\in f$, то есть функция -- кортеж объектов $\left(f,\ X,\ Y\right)$.

В этих определениях

$x$ - независимая переменная.

$y$ - зависимая переменная.

Все возможные значения переменной $x$ называется областью определения функции , а все возможные значения переменной $y$ называется областью значения функции.

Аналитический способ задания функции

Для этого способа нам понадобится понятие аналитического выражения.

Определение 8

Аналитическим выражением называется произведение всех возможных математических операций над какими-либо числами и переменными.

Аналитическим способом задания функции и является её задание с помощью аналитического выражения.

Пример 1

$y=x^2+7x-3$, $y=\frac{x+5}{x+2}$, $y=cos5x$.

Плюсы:

  1. С помощью формул мы можем определить значение функции для любого определенного значения переменной $x$;
  2. Функции, заданные таким способом можно изучать с помощью аппарата математического анализа.

Минусы:

  1. Малая наглядность.
  2. Иногда приходится производить очень громоздкие вычисления.

Табличный способ задания функции

Данный способ задания состоит в том, что для нескольких значений независимой переменной выписываются значения зависимой переменной. Все это вносится в таблицу.

Пример 2

Рисунок 1.

Плюс: Для любого значения независимой переменной $x$, которая внесена в таблицу, сразу узнается соответствующее значение функции $y$.

Минусы:

  1. Чаще всего, нет полного задания функции;
  2. Малая наглядность.

Сделаем ряд разъяснительных замечаний по поводу задания функции аналитическим выражением или формулой, которые играют в математическом анализе исключительно важную роль.

1° Прежде всего, какие аналитические операции или действия могут входить в эти формулы? На первом месте здесь разумеются все изученные в элементарной алгебре и тригонометрии операции: арифметические действия, возвышение в степень (и извлечение корня), логарифмирование, переход от углов к их тригонометрическим величинам и обратно [см. ниже 48 - 51]. Однако, и это важно подчеркнуть, к их числу по мере развития наших сведений по анализу будут присоединяться и другие операции, в первую голову - предельный переход, с которым читатель уже знаком из главы I.

Таким образом, полное содержание термина «аналитическое выражение» или «формула» будет раскрываться лишь постепенно.

2° Второе замечание относится к области определения функции аналитическим выражением или формулой.

Каждое аналитическое выражение, содержащее аргумент х, имеет, так сказать, естественную область применения: это множество всех тех значений х, для которых оно сохраняет смысл, т. е. имеет вполне определенное, конечное, вещественное значение. Разъясним это на простейших примерах.

Так, для выражения такой областью будет все множество вещественных чисел. Для выражения эта область сведется к замкнутому промежутку за пределами которого значение его перестает быть вещественным. Напротив, выражению придется в качестве естественной области применения отнести открытый промежуток ибо на концах его знаменатель обращается в 0. Иногда область значений, для которых выражение сохраняет смысл, состоит из разрозненных промежутков: для это будут промежутки для - промежутки и т. д.

В качестве последнего примера рассмотрим сумму бесконечной геометрической прогрессии

Если то, как мы знаем , этот предел существует и имеет значение . При предел либо равен либо вовсе не существует. Таким образом, для приведенного аналитического выражения естественной областью применения будет открытый промежуток

В последующем изложении нам придется рассматривать как более сложные, так и более общие аналитические выражения, и мы не раз будем заниматься исследованием свойств функций, задаваемых подобным выражением во всей области, где оно сохраняет смысл, т. е. изучением самого аналитического аппарата.

Однако возможно и другое положение вещей, на что мы считаем нужным заранее обратить внимание читателя. Представим себе, что какой-либо конкретный вопрос, в котором переменная х по существу дела ограничена областью изменения X, привел к рассмотрению функции допускающей аналитическое выражение. Хотя может случиться, что это выражение имеет смысл и вне области X, выходить за ее пределы, разумеется, все же нельзя. Здесь аналитическое выражение играет подчиненную, вспомогательную роль.

Например, если, исследуя свободное падение тяжелой точки с высоты над поверхностью земли, мы прибегнем к формуле

То нелепо было бы рассматривать отрицательные значения t или значения большие, чем ибо, как легко видеть, при точка уже упадет на землю. И это несмотря на то, что само выражение - сохраняет смысл для всех вещественных .

3° Может случиться, что функция определяется не одной и той же формулой для всех значений аргумента, но для одних - одной формулой, а для других - другой. Примером такой функции в промежутке может служить функция, определяемая следующими тремя формулами:

и, наконец, если .

Упомянем еще о функции Дирихле (P. G. Lejeune-Dinchlet), которая определяется так:

Наконец, вместе с Кронекером (L. Kroneckcf) рассмотрим функцию, которую он назвал «сигнум и обозначил через


Различные способы задания функции Аналитический, графический, табличный – наиболее простые, а потому наиболее популярные способы задания функции, для наших нужд этих способов вполне достаточно. Аналитическийграфическийтабличный На самом деле в математике имеется довольно много различных способов задания функции и один из них – словесный, который используется в весьма своеобразных ситуациях.


Словесный способ задания функции Функция может быть задана и словесно, т. е. описательно. Например, так называемая функция Дирихле задается следующим образом: функция у равна 0 для всех рациональных и 1 для всех иррациональных значений аргумента х. Такая функция не может быть задана таблицей, так как она определяется на всей числовой оси и множество значений ее аргумента бесконечно. Графически данная функция также не может быть задана. Аналитическое выражение для этой функции было, все же найдено, но оно так сложно, что не имеет практического значения. Словесный же способ дает краткое и ясное ее определение.


Пример 1 Функция y = f (x) задана на множестве всех неотрицательных чисел с помощью следующего правила: каждому числу х 0 ставится в соответствии первый знак после запятой в десятичной записи числа x. Если, скажем, х = 2,534, то f(х) = 5 (первый знак после запятой – цифра 5); если х = 13,002, то f(х) = 0; если х = 2/3, то, записав 2/3 в виде бесконечной десятичной дроби 0,6666…, находим f(x) = 6. А чему равно значение f(15)? Оно равно 0, так как 15 = 15,000…, и мы видим, что первый десятичный знак после запятой есть 0 (вообще – то верно равенство 15 = 14,999…, но математики договорились не рассматривать бесконечные периодические десятичные дроби с периодом 9).


Любое неотрицательное число х можно записать в виде десятичной дроби (конечной или бесконечной), а потому для каждого значения х можно найти определенное число значений первого знака после запятой, так что мы можем говорить о функции, хотя и несколько необычной. D (f) = . = 2 [" title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [" class="link_thumb"> 7 Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 = 47 [ - 0,23] = - 1 x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 ["> x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 = 47 [ - 0,23] = - 1"> x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [" title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 ["> title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [">


Из всех указанных способов задания функции наибольшие возможности для применения аппарата математического анализа дает аналитический способ, а н нн наибольшей наглядностью обладает г гг графический. Вот почему математический анализ основывается на глубоком синтезе аналитических и геометрических методов. Исследование функций, заданных аналитически, проводится гораздо легче и становится наглядным, если параллельно рассматривать и графики этих функций.





Х у=х


Великий математик - Дирихле В профессор Берлинского, с 1855 Гёттингенского университетов. Основные труды по теории чисел и математическому анализу. В области математического анализа Дирихле впервые точно сформулировал и исследовал понятие условной сходимости ряда, установил признак сходимости ряда (т.н. признак Дирихле, 1862), дал (1829) строгое доказательство возможности разложения в ряд Фурье функции, имеющей конечное число максимумов и минимумов. Значительные работы Дирихле посвящены механике и математической физике (принцип Дирихле в теории гармонической функции). Дирихле Петер Густав Лежён () Немецкий математик, иностранный чл.-корр. Петербургской АН (с), член Лондонского королевского общества (1855), Парижской АН (1854), Берлинской АН. Дирихле доказал теорему о существовании бесконечно большого числа простых чисел во всякой арифметической прогрессии из целых чисел, первый член и разность которой - числа взаимно простые и изучал (1837) закон распределения простых чисел в арифметических прогрессиях, в связи с чем ввел функциональные ряды особого вида (т.н. ряды Дирихле).