В анализе структуры коры участвовали многие ученые (Экономо, Бец, Фогт, Бейли и др.) Их карты полей коры различаются между собой количеством полей, отсутствием четких пограничных линий, большой индивидуальной вариабельностью. Наиболее признаны карты К. Бродмана, который выделил 52 поля на поверхности коры полушарий ( , ).

И.П. Павлов считал, что кору полушарий можно представить как совокупность центров различных анализаторов. Считается, что центр состоит из ядра, имеющего определенную локализацию в коре, между которыми находятся рассеянные элементы, относящиеся к разным анализаторам. Это позволяет говорить о динамической локализации функций в коре полушарий большого мозга. При этом функции полей коры связаны с противоположной половиной организма человека, т.к. все пути их связывающие обязательно перекрещиваются. И. П. Павлов разделил все центры анализаторов на две сигнальные системы.

К ПЕРВОЙ СИГНАЛЬНОЙ СИСТЕМЕ (SI) он отнес те центры, которые воспринимают сигналы от внешней или внутренней среды в виде ощущений, впечатлений, представлений (за исключением речи и слова ). Эти центры имеются как у животных, так и у человека. Они расположены в обоих полушариях, даны от рождения и не восстанавливаются при разрушении. К ним относятся (рис. 26 , 27):
1, 2, 3 - ядра общей чувствительности (температурной, болевой, осязательной и проприоцептивной).
4, 6 - ядро двигательного анализатора. В нем развиты клетки 5 слоя коры, которые иннервируют мышцы противоположной половины тела. Мышцы тела спроецированы на переднюю центральную извилину (моторное поле) и околоцентральную дольку как бы вверх ногами (двигательный гомункулус).
8 - премоторное поле.
46 - сочетанный поворот головы и глаз. Это ядро принимает импульсы от рецепторов мышц глазного яблока и от представительства в коре сетчатки глаза (от поля 17).
5, 7 - стереогнозии. В этот центр проецируются рецепторы верхней конечности для узнавания предметов на ощупь.
40 - праксии. Осуществление всех сложных комбинированных движений, приобретенных в результате практической деятельности, преимущественно профессиональной.
41, 42, 52 - ядро слухового анализатора (на извилинах Гешля), к его клеткам подходят волокна от левого и правого уха, поэтому одностороннее поражение ядра не приводит к полной утрате слуха:
41 - первичное поле, оно воспринимает импульсы,
42 - психологическое поле, слуховая память,
52 - оценочное поле, с его помощь ориентируемся в пространстве.
17, 18, 19 - ядро зрительного анализатора, к его клеткам подходят волокна от латеральной стороны сетчатки глаза своей половины тела, а также от медиальной сетчатки глаза противоположной половины тела. Поэтому полная корковая наступает при поражении центров обоих полушарий:
17 - первичное поле,
18 - психологическое,
19 - оценочное.
А, Е, 11 - ядро обонятельного анализатора, расположено в наиболее древних структурах коры больших полушарий (в крючке и гиппокампе)
43 - ядро вкусового анализатора. Как отмечал В. М. Бехтерев, этот анализатор тесно взаимосвязан с обонятельными полями обоих полушарий.

Таким образом, "психологические" зоны коры (19, 42, 5 и 7) вызывают оценку или ассоциацию различной информации. Они окружают надкраевую (маргинальную) дольку и тесно взаимосвязаны с ней, поэтому нарушение в этой дольке влияет на обобщение информации и его понимание.

Рис. 28. Цитоархитектонические поля коры полушарий (верхнелатеральная поверхность)


Рис. 29. Цитоархитектонические поля коры полушарий (медиальная поверхность)

ВТОРАЯ СИГНАЛЬНАЯ СИСТЕМА (SII) имеется только у человека. Она обусловлена развитием речи и, как считал И. П. Павлов, является "сигналами сигналов". Они представляют собой отвлечение от действительности, допускают обобщение информации и составляют основу высшего мышления. Речевые и мыслительные функции выполняются при участии всей коры. Однако можно выделить определенные поля, которым присущи строго определенные речевые функции. Речевые центры развиваются после рождения, как правило, в левом полушарии (исключения имеются для левшей). При их потере человек может снова развить речевые центры, но в этом случае их функцию на себя возьмут другие поля.
44 - ядро двигательного анализатора письменной речи, иннервирует тонкие мышцы кисти и пальцев. У левшей данный центр находится в правом полушарии. При разрушении данного центра происходит потеря способности писать - агрофия.
45 - ядро двигательного анализатора устной речи (Брока). Иннервирует мышцы гортани, языка, губ и др. участвующие в артикуляции. Двигательная афазия - потеря способности произносить слова.
47 - речевой анализатор пения, позволяет произносить слова нараспев Используется для восстановления речи у детей с

В коре головного мозга различают зоны - поля Бродмана (нем. физиолог).

1-я зона - двигательная - представлена центральной извилиной и лобной зоной впереди нее - 4, 6, 8, 9 поля Бродмана. При ее раздражении - различные двигательные реакции; при ее разрушении - нарушения двигательных функций: адинамия, парез, паралич (соответственно - ослабление, резкое снижение, исчезновение).

2-я зона - чувствительная - участки коры головного мозга кзади от центральной борозды (1, 2, 3, 4, 5, 7 поля Бродмана). При раздражении этой зоны - возникают ощущения, при ее разрушении - выпадение кожной, проприо-, интерочувствительности. Гипостезия - снижение чувствительности, анестезия - выпадение чувствительности, парестезия - необычные ощущения (мурашки). Верхние отделы зоны - представлена кожа нижних конечностей, половых органов. В нижних отделах - кожа верхних конечностей, головы, рта.

1-я и 2-я зоны тесно связаны друг с другом в функциональном отношении. В двигательной зоне много афферентных нейронов, получающих импульсы от проприорецепторов - это мотосенсорные зоны. В чувствительной зоне много двигательных элементов - это сенсомоторные зоны - отвечают за возникновение болевых ощущений.

3-я зона - зрительная зона - затылочная область коры головного мозга (17, 18, 19 поля Бродмана). При разрушении 17 поля - выпадение зрительных ощущений (корковая слепота). При поражении 18 поля страдают функции, связанные с распознаванием зрительного образа и нарушается восприятие письма. При поражении 19 поля - возникают различные зрительные галлюцинации, страдает зрительная память и другие зрительные функции.

4-я - зона слуховая - височная область коры головного мозга (22, 41, 42 поля Бродмана). При поражении 42 поля - нарушается функция распознавания звуков, 22 поля - возникают слуховые галлюцинации, нарушение слуховых ориентировочных реакций, музыкальная глухота, 41 поля - корковая глухота.

5-я зона - обонятельная - располагается в грушевидной извилине (11 поле Бродмана).

6-я зона - вкусовая - 43 поле Бродмана.

7-я зона - речедвигательная зона (по Джексону - центр речи) - у большинства людей (праворуких) располагается в левом полушарии.

Всего различают (по Бродману) - 53 поля.

Поля делят на первичные, вторичные, третичные.

Первичные обеспечивают обработку определенной сенсорной информации.Вторичные и третичные взаимодействие сигналов разных сенсорных систем.

Лимбическая система

Возникновение и протекание эмоций тесно связано с деятельностью модулирующих систем мозга, причем решающую роль играет лимбическая система.

Лимбическая система - комплекс функционально связанных между собой филогенетически древних глубинных структур головного мозга, участвующих в регуляции вегетативно-висцеральных функций и поведенческих реакций организма. Термин "лимбическая система" ввел в 1952 г. Мак Лин. Однако еще ранее, в 1937 г. Папец предположил наличие "анатомического" эмоционального кольца. В него входили: гиппокамп - свод - мамиллярные тела - переднее ядро таламуса - поясная извилина - гиппокамп. Круг Папеца лег в основу лимбической системы. В своих основных частях она сходна у всех млекопитающих. К лимбической системе, кроме кольца Папеца, принято относить: некоторые ядра гипоталамуса, миндалевидное тело, или миндалину, обонятельную луковицу, тракт и бугорок, неспецифические ядра таламуса и ретикулярную формацию среднего мозга. В совокупности эти морфологические структуры образуют единую гипоталамо-лимбико-ретикулярную систему. Центральной частью лимбической системы является гиппокамп. Кроме того, существует точка зрения, что передняя лобная область является неокортикальным продолжением лимбической системы.

Нервные сигналы, поступающие от всех органов чувств, направляясь по нервным путям ствола мозга в кору, проходят через одну или несколько лимбических структур - миндалину, гиппокамп или часть гипоталамуса. Сигналы, исходящие от коры, тоже проходят через эти структуры. Различные отделы лимбической системы по-разному ответственны за формирование эмоций. Их возникновение зависит в большей степени от активности миндалевидного комплекса и поясной извилины. Однако лимбическая система принимает участие в запуске преимущественно тех эмоциональных реакций, которые уже апробированы в ходе жизненного опыта. Существуют убедительные данные в пользу того, что ряд фундаментальных человеческих эмоций имеет эволюционную основу.

По определению, эмоции - особый класс психических процессов и состояний, связанных с потребностями и мотивами, отражающих в форме непосредственных субъективных переживаний (удовлетворения, радости, страха и т.д.) значимость действующих на индивида явлений и ситуаций. Сопровождая практически любые проявления жизненной активности человека, эмоции служат одним из главных механизмов внутренней регуляции психической деятельности и поведения, направленных на удовлетворение потребностей.

По критерию длительности эмоциональных явлений выделяют:

- эмоциональный фон (или эмоциональное состояние)

- эмоциональное реагирование.

Указанные два класса эмоциональных явлений подчиняются разным закономерностям. Эмоциональное состояние в большей степени отражает общее глобальное отношение человека к окружающей ситуации, к себе самому и связано с его личностными характеристиками, эмоциональное реагирование - это кратковременный эмоциональный ответ на то или иное воздействие, имеющий ситуационный характер. Наиболее существенными характеристиками эмоций являются их знак и интенсивность. Положительные и отрицательные эмоции всегда характеризуются определенной интенсивностью.

Наиболее широко используют карту полей Бродмана, на которой кора разделена на 44 цитоархитектонические зоны (его схема была расширена до 52 полей, однако не все поля использовали). Большая часть полей представлена на рисунке ниже, однако четких границ между этими полями не существует. (Эти числа часто используют для обозначения функциональных областей, хотя Бродман отвергал подобную корреляцию.)

На рисунке ниже разным цветом выделены три основные первичные сенсорные зоны (соматическая, зрительная и слуховая) и одна первичная моторная зона. Рядом с каждой первичной сенсорной или моторной зоной расположена ассоциативная кора-унимодальная ассоциативная зона (той же модальности). Остальная часть новой коры представлена мультимодальными (полимодальными) ассоциативными зонами, к которым подходят волокна от многих унимодальных ассоциативных зон (например, от зон тактильной и зрительной чувствительности, зрительной и слуховой) и других мультимодальных или паралимбических областей.

Цитоархитектонические поля Бродмана. Окрашенные зоны :
а) Моторная (красная) :
4 - первичная моторная кора
6 - на медиальной поверхности, дополнительная моторная зона
6 - на латеральной поверхности, премоторная кора
б) Сенсорная (голубая) :
3/1/2 - первичная соматосенсорная кора
40 - вторичная соматосенсорная кора
17 - первичная зрительная кора 18,
19 - ассоциативная зрительная кора
41, 42 - первичная слуховая кора*
22 - ассоциативная слуховая кора
(*Первичную слуховую кору не всегда можно увидеть сбоку, так как она полностью расположена на верхней поверхности верхней височной извилины.)

Изучение функциональной анатомии . Термином коннектом обозначают «полную карту нейронных связей, охватывающих все функции ». Однако для создания законченной функциональной карты человеческого мозга требуется объединить эмпирические данные со структурными связями, при этом многое все еще остается неизвестным. Современные подходы создают уникальные возможности для достижения этой цели с помощью новых возможностей обработки и хранения данных, нейрофизиологических исследований и магнитно-резонансной томографии (МРТ), позволяющих получить изображения головного мозга живого человека.

Новые достижения в понимании устройства мозга ознаменовались смещением приоритета с отдельных зон коры на рассмотрение всех отделов и взаимосвязей как единого целого. Были разработаны новые теоретические и методологические схемы, позволяющие описывать и прогнозировать сложную системную динамику путем использования сетевого анализа и математических методов, основанных на теории графов. В сетевых моделях используют совокупности «элементарных» корковых единиц и их взаимодействия, чтобы показать появление функционирующих участков в динамике или «поймать мозг в действии».

Эти модели остаются ограниченными известными взаимосвязями между зонами коры, а существование некоторых взаимосвязей было предположено по результатам исследований у приматов. Однако данные модели позволяют предположить наличие взаимосвязей или проводящих путей, существование которых структурно не доказано, на основании типа реакции. Несмотря на прогресс в исследовании проводящих путей и взаимосвязей в коре при лучевой диагностике мозга живого человека благодаря использованию нейрорентгенологических методов и математического моделирования, внедрение новых и продолжение использования «старых» техник изучения нейроанатомии необходимо для получения структурных свидетельств существования этих проводящих путей и возбуждающих нейронных систем.

Для «определения и локализации» функций головного мозга используют преимущественно две методики. В основе обеих лежит регистрация локального усиления кровотока в ответ на повышенную потребность мозга в кислороде в результате увеличения нейронной активности.

1. Позитронная эмиссионная томография (ПЭТ ). С помощью позитронной эмиссионной томографии (ПЭТ) измеряют потребление кислорода после введения в вену предплечья воды, меченной кислородом-15 (15 O). 15 O - излучающий позитроны изотоп кислорода; в крови позитроны реагируют с окружающими электронами и испускают у-лучи, которые регистрируют детекторы γ-лучей. Для измерения уровня потребления глюкозы используют также 18-фтордезоксиглюкозу (18 F-дезок-сиглюкоза). Нейроны захватывают 18 F-дезоксиглюкозу в той же степени, что и глюкозу.

Для правильной интерпретации данных ПЭТ требуется выполнение вычитания изображений и усреднения изображений, описанных под рисунком ниже. Аналогичная методика извлечения сигнала описана для функциональной МРТ (фМРТ).

При проведении специализированных исследований (например, при определении суммарной функции рецепторов) используют меченные изотопом химические вещества: меченный радиоизотопом дофамин в полосатом теле при болезни Паркинсона, меченный радиоизотопом серотонин в стволе мозга и коре больших полушарий при депрессии, меченую ацетилхолинэстеразу при болезни Альцгеймера.

2. Функциональная магнитно-резонансная томография (фМРТ ). При фМРТ не требуется введения дополнительных веществ. Метод основан на различии в магнитных свойствах оксигенированной и неоксигенированной крови. Если локального усиления кровотока более чем достаточно для покрытия потребности в кислороде, повышается коэффициент отношения оксигемоглобина к дезоксигемоглобину, что ведет к образованию MPT-сигнала. Функциональные и структурные взаимосвязи можно выявить при взаимном изменении или колебании интенсивности фМРТ-сигнала в различных корковых зонах даже при отсутствии «прямых» кортикальных связей. Приведенные ниже данные были получены с помощью функциональных методов исследования, клинических наблюдений и результатов экспериментов на животных.


Вычитание изображений и усреднение изображений при позитронной эмиссионной томографии (ПЭТ).
Верхний. Контрольное среднее изображение получено у пациента в покое. Захват 15 O происходит во всех отделах коры и подкоркового серого вещества.
Левое изображение получено у того же пациента, следящего за движущимися по экрану точками.
Высокий уровень фоновой активности скрывает результат исследования. Правое изображение получено вычитанием контрольного изображения и позволяет увидеть повышенную активность зрительной коры при выполнении зрительной задачи.
Средний. Аналогичную задачу выполняли другие четыре пациента. Вычитание фонового «шума» позволило выявить значительные различия между пациентами.
Поскольку размеры мозга у людей варьируют, активность мозга у этих пятерых пациентов была наложена на общий, «средний» мозг (хотя мозг на всех рисунках изображен одинаково). Нижний. Усредненное значение пяти исследований указывает на среднюю разницу в этой группе.

Головной мозг - сложнейший орган в человеческом организме. Наиболее высокоорганизованная его часть - это кора. Благодаря ее наличию человек способен читать, писать, думать, помнить и прочее. Изучению особенностей строения коры уделяли внимание многие ученые. Существует множество работ о делении коры на так называемые поля Бродмана. Именно о них и пойдет речь далее в статье.

Немного об истории

Построением карты поверхности головного мозга занималось много ученых: Бейли, Бец, Экономо и прочие. Их карты значительно отличались друг от друга по форме полей, их размерам, количеству. В современной нейроанатомии наибольшее признание получили поля головного мозга по Бродману. Всего насчитывается 52 поля.

Павлов, в свою очередь, подразделил все поля на две большие группы:

  • центры первой сигнальной системы;
  • центры второй сигнальной системы.

Каждый центр состоит из ядра, играющего ключевую роль в осуществлении функции определенного центра, и анализаторов, окружающих ядро. Примечательно то, что центры в коре головного мозга регулируют функционирование органов на противоположной стороне тела. Это связано с тем, что проводящие пути нервных волокон делают перекрест на своем пути от центра к периферии.

Поля мозга по Бродману обозначены арабскими цифрами, у некоторых также есть обозначение, из которого можно понять функцию конкретного поля.

Первая сигнальная система: расположение

Центры первой сигнальной системы расположены в полях Бродмана, которые присутствуют и у животного, и у человека. Они отвечают за простую реакцию на внешний раздражитель, формирование ощущений, представлений. Эти центры присутствуют и в правом, и в левом полушарии коры головного мозга. Поля Бродмана первой сигнальной системы есть у человека с рождения и в норме не подвергаются изменениям в течение жизни.

К этим полям относятся:

  • 1 - 3 - находятся в теменной доле коры головного мозга позади от центральной извилины;
  • 4, 6 - расположены в лобной доле кпереди от центральной извилины, имеют в своем составе пирамидные клетки Беца;
  • 8 - это поле находится кпереди от 6-го, ближе к фронтальной части лобной коры;
  • 46 - расположено на наружной поверхности лобной доли;
  • 41, 42, 52 - размещены на так называемых извилинах Гешле, на базальной части височной доли головного мозга;
  • 40 - находится в теменной доли позади 1 - 3 полей, ближе к височной части;
  • 17 и 19 - расположены в затылочной части головного мозга, наиболее дорсально от остальных полей;
  • 11 - одна из наиболее древних структур, находится в гиппокампе.

Первая сигнальная система: функции

Функции полей Бродмана в первой сигнальной системе отличаются в зависимости от локализации центра, особенностей его гистологической структуры. В целом эти ядра выполняют такие функции:

  • осуществление двигательного процесса;
  • узнавание предметов на ощупь;
  • слух;
  • зрение.

Чтобы осуществить точное движение, необходима одновременная активация нескольких полей Брока:

  1. Центры 4 и 6, пирамидные клетки которых несут импульс к скелетным мышцам и обеспечивают их сокращение.
  2. Поле под номером 40, где находятся центры осуществления сложных, стереотипных для конкретного человека движений. Эти центры формируются в течение жизни индивидуума, как правило, во время профессиональной деятельности.
  3. Иногда необходима активация 46 поля, которое отвечает за синхронный поворот глаз вместе с головой.

В узнавании предметов на ощупь, или стереогнозии, участвуют поля под номерами 5 и 7.

Поля 41, 42 и 52 необходимы для того, чтобы человек мог воспринимать звуки окружающего мира. Причем к центру слуха с одной стороны подходят волокна сразу из двух ушей. Поэтому повреждение коры с одной стороны не приводит к слуховым нарушениям. Центр, расположенный в поле 41, отвечает за первичный анализ информации. В 42 поле находятся центры слуховой памяти. А при помощи поля под номером 52 человек может ориентироваться в пространстве.

В полях с 17 по 19 находится зрительный анализатор. По аналогии со слуховыми центрами, в 17 поле происходит первичный анализ информации, в 18 находится зрительная память, а в 19 - оценочные центры и ориентация.

В 11 поле расположены центры обоняния, в 43 - центры вкуса.

Вторая сигнальная система: расположение

Присутствие второй сигнальной системы характерно только для человека. Именно эти центры обеспечивают высшее мышление, которое включает в себя обобщение информации, мечты, логику. По сути, для нормального мышления и речи необходима активация всех полей Бродмана, но можно выделить центры, которые имеют свои специфические функции:

  • 44 - расположено в задней части нижней лобной извилины;
  • 45 - находится кпереди от 44 поля, в переднем участке лобной извилины;
  • 47 - размещено ниже двух предыдущих полей, ближе к базальной части лобной доли;
  • 22 - одна из наиболее передних ;
  • 39 - находится в задней части верхней височной извилины.

Вторая сигнальная система: функции

Как уже было отмечено выше, цитоархитектонические поля Бродмана второй сигнальной системы необходимы для осуществления высшей нервной деятельности. А основное отличие человека от животного - способность к речи.

В 45 поле находится центр Брока. Он необходим для нормальной моторики речи. Именно благодаря наличию этого центра человек способен произносить слова. При его повреждении развивается состояние под названием "моторная афазия".

В 44 поле находится центр письменной речи. Импульсы из этого участка коры поступают к скелетным мышцам пальцев и кисти. При его разрушении человек теряет способность писать, что получило название "аграфия".

47 поле отвечает за пение. Именно при нормальной работе этого центра человек может произносить слова нараспев.

В 22 поле находится центр Вернике. Здесь происходит анализ слуховой речи. Благодаря нормальной работе 22 поля человек воспринимает слова на слух.

39 поле - центр зрительной речи. Функционирование этого поля позволяет человеку различать символы, написанные на бумаге. При его повреждении человек теряет способность читать, что называется сенсорной алексией.

Заключение

Цитоархитектонические поля Бродмана - важные структуры коры головного мозга. Но есть также центры, свободные от этих полей. Они размещены преимущественно в лобной доле, между височной и затылочной областями. Их называют ассоциативными зонами.

Центральная часть мозга с пронумерованными полями Бродмана.

Поля Бродмана

  • Поля 1 и 2, 3 - соматосенсорная область, первичная зона . Находятся в постцентральной извилине . В связи с общностью функций используется термин «поля 1 и 2, 3 » (спереди назад)
  • Поле 4 - первичная моторная кора . Располагается в пределах прецентральной извилины
  • Поле 5 - вторичная соматосенсорная зона. Располагается в пределах верхней теменной дольки
  • Поле 6 - премоторная кора и дополнительная моторная кора (вторичная моторная зона). Располагается в передних отделах прецентральной и задних отделах верхней и средней лобной извилин.
  • Поле 7 - третичная зона. Расположена в верхних отделах теменной доли между постцентральной извилиной и затылочной долей
  • Поле 8 - располагается в задних отделах верхней и средней лобной извилин. Включает в себя центр произвольных движений глаз
  • Поле 9 - дорсолатеральная префронтальная кора
  • Поле 10 - передняя префронтальная кора
  • Поле 11 - обонятельная область
  • Поле 12 -
  • Поле 13 -
  • Поле 14 -
  • Поле 15 -
  • Поле 16 -
  • Поле 17 - ядерная зона зрительного анализатора - зрительная область, первичная зона
  • Поле 18 - ядерная зона зрительного анализатора - центр восприятия письменной речи, вторичная зона
  • Поле 19 - ядерная зона зрительного анализатора, вторичная зона (оценка значения увиденного)
  • Поле 20 - нижняя височная извилина (центр вестибулярного анализатора, распознавание сложных образов)
  • Поле 21 - средняя височная извилина (центр вестибулярного анализатора)
  • Поле 22 - ядерная зона звукового анализатора
  • Поле 23 -
  • Поле 24 - передняя поясная кора
  • Поле 25 -
  • Поле 26 -
  • Поле 27 -
  • Поле 28 - проекционные поля и ассоциативная зона