В этой статье мы рассмотрим способ решения однородных тригонометрических уравнений.

Однородные тригонометрические уравнения имеют ту же структуру, что и однородные уравнения любого другого вида. Напомню способ решения однородных уравнений второй степени:

Рассмотрим однородные уравнения вида

Отличительные признаки однородных уравнений:

а) все одночлены имеют одинаковую степень,

б) свободный член равен нулю,

в) в уравнении присутствуют степени с двумя различными основаниями.

Однородные уравнения решаются по сходному алгоритму.

Чтобы решить уравнение такого типа, разделим обе части уравнения на (можно разделить на или на )

Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

Если является, то мы выписываем этот корень, чтобы потом про него не забыть, а затем делим на это выражение.

Вообще, первым делом, при решении любого уравнения, в правой части которого стоит ноль, нужно попытаться разложить левую часть уравнения на множители любым доступным способом. А затем каждый множитель приравнять к нулю. В этом случае мы точно не потеряем корни.

Итак, осторожно разделим левую часть уравнения на выражение почленно. Получим:

Сократим числитель и знаменатель второй и третьей дроби:

Введем замену:

Получим квадратное уравнение:

Решим квадратное уравнение, найдем значения , а затем вернемся к исходному неизвестному.

При решении однородных тригонометрических уравнений, нужно помнить несколько важных вещей:

1. Свободный член можно преобразовать к квадрату синуса и косинуса с помощью основного тригонометрического тождества:

2. Синус и косинус двойного аргумента являются одночленами второй степени - синус двойного аргумента легко преобразовать к произведению синуса и косинуса, а косинус двойного аргумента - к квадрату синуса или косинуса:

Рассмотрим несколько примеров решения однородных тригонометрических уравнений.

1 . Решим уравнение:

Это классический пример однородного тригонометрического уравнения первой степени: степень каждого одночлена равна единице, свободный член равен нулю.

Прежде чем делить обе части уравнения на , необходимо проверить, что корни уравнения не являются корнями исходного уравнения. Проверяем: если , то title="sin{x}0">, следовательно их сумма не равна нулю.

Разделим обе части уравнения на .

Получим:

, где

, где

Ответ: , где

2 . Решим уравнение:

Это пример однородного тригонометрического уравнения второй степени. Мы помним, что если мы можем разложить левую часть уравнения на множители, то желательно это сделать. В этом уравнении мы можем вынести за скобки . Сделаем это:

Решение первого уравнения: , где

Второе уравнение - однородное тригонометрическое уравнение первой степени. Чтобы его решить, разделим обе части уравнения на . Получим:

Ответ: , где ,

3 . Решим уравнение:

Чтобы это уравнение "стало" однородным, преобразуем в произведение, и представим число 3 в виде суммы квадратов синуса и косинуса:

Перенесем все слагаемые влево, раскроем скобки и приведем подобные члены. Получим:

Разложим левую часть на множители и приравняем каждый множитель к нулю:

Ответ: , где ,

4 . Решим уравнение:

Мы видим, что можем вынести за скобки . Сделаем это:

Приравняем каждый множитель к нулю:

Решение первого уравнения:

Второе уравнение совокупности представляет собой классическое однородное уравнение второй степени. Корни уравнения не являются корнями исходного уравнения, поэтому разделим обе части уравнения на :

Решение первого уравнения:

Решение второго уравнения.

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A - некоторое множество пар чисел (x ; y ) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

где f (x , y ) – любая функция, отличная от функции

f (x , y ) = ax +by + c ,

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y ) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Ответ : (6 ; 3)

Пример 2 . Решить уравнение

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

(1 + y ; y ) ,

где y – любое число.

линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y ) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное , имеют вид

g (x , y )

Пример 4 . Решить систему уравнений

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Решая уравнение

x 1 = - 1 , x 2 = 9 .

Следовательно,

y 1 = 8 - x 1 = 9 ,
y 2 = 8 - x 2 = - 1 .

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное , имеют вид

где a , b , c – заданные числа, а g (x , y ) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

Решение . Решим однородное уравнение

3x 2 + 2xy - y 2 = 0 ,

3x 2 + 17xy + 10y 2 = 0 ,

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = - 5y , из второго уравнения системы (11) получаем уравнение

5y 2 = - 20 ,

которое корней не имеет.

В случае, когда

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y 1 = 3 , y 2 = - 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (- 2 ; 3) , (2 ; - 3) .

Ответ : (- 2 ; 3) , (2 ; - 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

У системы (16) первое уравнение - линейное , поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы.

Государственное бюджетное профессиональное образовательное учреждение с.Тээли Республики Тыва

Разработка урока по математике

Тема урока:

«Однородные тригонометрические уравнения»

Преподаватель: Ооржак

Айлана Михайловна

Тема урока : «Однородные тригонометрические уравнения» (по учебнику А.Г. Мордковича)

Группа : Мастер растениеводства, 1 курс

Тип урока : Урок изучения нового материала.

Цели урока :

2. Развивать логическое мышление, умение делать выводы, умение оценивать результаты выполненных действий

3. Воспитывать у обучающихся аккуратность, чувство ответственности, воспитание положительных мотивов учения

Оборудование урока : ноутбук, проектор, экран, карточки, плакаты по тригонометрии: значения тригонометрических функций, основные формулы тригонометрии.

Продолжительность урока: 45 минут.

Структура урока:

Структурный элемент урока

Пд

(мин)

Методические особенности, краткие указания по проведению этапа урока

Деятельность преподавателя

Деятельность обучающихся

Организационный момент

Контроль явки учащихся.

α 0

Преподаватель проверяет готовность к уроку

Дежурные сообщают отсутствующих на уроке

Актуализация опорных знаний

Проверка домашнего задания

α 2

Повторение основных понятий

Делает обход

3 обучающихся у доски записывают решение. Остальные делают взаимопроверку

Формирование новых знаний

Мотивационный момент

α 2

На экране примеры тригонометрических уравнений

Задает вопросы

Отвечают

Объяснение новой темы

α 1

На экране слайды с решением однородных тригонометрических уравнений

Преподаватель объясняет тему

Обучающиеся слушают и записывают

Закрепление

Решение примеров

α 2

Слабые обучающиеся работают с преподавателем. Сильные обучающиеся работают самостоятельно.

Работает со слабыми обучающимися у доски.

Решают примеры

Дифференцированная самостоятельная работа

α 2

Раздать карточки

Делает обход. Контроль слабых обучающихся

Решают примеры

Подведение итогов

α 1

Подведение итогов урока. Сообщение оценок учащимся

Преподаватель подводит итог и сообщает оценки

Обучающиеся слушают

Выдача домашнего задания

α 1

Сообщить обучающимся домашнее задание

Преподаватель дает краткий инструктаж по домашнему заданию

Записывают домашнее задание

Ход урока.

1. Организационный момент (1 мин)

Проверить готовность обучающихся к уроку, заслушать дежурных по группе.

2. Актуализация опорных знаний (3 мин)

2.1. Проверка домашнего задания.

Трое обучающихся решают у доски № 18.8 (в,г); № 18.19. Остальные обучающиеся делают взаимопроверку.

№ 18.8 (в)

5 cos 2 x + 6 sin x – 6 = 0

5 (1 - sin x) + 6 sin x – 6 = 0

5 - 5 sin 2 x + 6 sin x – 6 = 0

5 sin 2 x + 6 sin x – 1 = 0

5 sin 2 x – 6 sin x + 1 = 0

z=sin x,

5z 2 – 6 z + 1 = 0

z 1 = 1, sin x = 1, х= +2 π n , n Z

z 2 = , sin x = , х= (-1) n arcsin + π n, n Z

Ответ: х= +2 π n , х=(-1) n arcsin + π n, n Z

№ 18.8 (г)

4 sin 3x + cos 2 3x = 4

4 sin 3x + (1-sin 2 3x) – 4 = 0

Sin 2 3x + 4 sin 3x – 3 = 0

sin 2 3x – 4 sin 3x + 3 = 0

z=sin 3x,

z 2 – 4 z + 3 = 0

z 1 = 3, не удовлетворяет условию

z 2 = 1, sin 3x =1, 3х= +2 π n , n Z

X = + π n , n Z

Ответ: x = + π n , n Z

№ 18.19 (в)

сos =

2x – = , n Z

x 1 = , n Z

x 2 = , n Z

а) б) 0, , , в) - г) - , 0,

3. Изучение нового материала (13 мин)

3.1. Мотивация обучающихся.

Обучающимся предлагается назвать уравнения, которые они знают и могут решить (слайд № 1)

1) 3 cos 2 х – 3 cos х = 0;

2) cos (х – 1) = ;

3) 2 sin 2 х + 3 sin х = 0;

4) 6 sin 2 х – 5 cos х + 5 = 0; 1 2

5) sin х cos х + cos²х = 0;

6) tg + 3ctg = 4.

7) 2sin х – 3cos х = 0;

8) sin 2 х + cos 2 х = 0;

9) sin²х – 3sinх cos х+2cos²х = 0.

Обучающиеся не смогут назвать решение уравнений 7-9.

3.2. Объяснение новой темы.

Преподаватель: Уравнения, которые вы не смогли решить довольно часто встречаются на практике. Они называются однородными тригонометрическими уравнениями. Записать тему урока: «Однородные тригонометрические уравнения». (слайд № 2)

На экране проектора определение однородных уравнений. (слайд № 3)

Рассмотреть метод решения однородных тригонометрических уравнений (слайд № 4, 5)

I степени

II степени

a sinx + b cosx = 0, (a,b ≠ 0).

Разделим обе части уравнения почленно на cosx ≠ 0.

Получим: a tgx + b = 0

Tgx = - –

простейшее тригонометрическое уравнение

a sin²x + b sinx cosx + c cos²x = 0.

1) если а ≠ 0, разделим обе части уравнения почленно на cos²x ≠0

Получим: a tg²x + b tgx + c = 0, решаем методом введения новой переменной z= tgx

2) если а = 0, то

Получим: b sinx cosx + c cos²x =0, решаем методом разложения на множители

При делении однородного уравнения

a sinx + b cosx = 0 на cos x ≠ 0

При делении однородного уравнения a sin²x + b sinx cosx + c cos²x = 0 на cos 2 x ≠ 0

корни этого уравнения не теряются.

Разобрать решение примеров

Пример 1. Решить уравнение 2sin х – 3cos х = 0; (слайд № 6)

Это однородное уравнение первой степени. Разделим обе части уравнения почленно на cos x , получим:

2tg x – 3 = 0

tg x =

x = arctg + πn , n Z.

Ответ: x = arctg + π n, n Z.

Пример 2 . Решить уравнение sin 2 х + cos 2 х = 0; (слайд № 7)

Это однородное уравнение первой степени. Разделим обе части уравнения почленно на cos 2 x , получим:

tg2 x + 1 = 0

tg2 x = - 1

2x = arctg (-1)+ πn, n Z.

2x = - + πn, n Z.

x = - + , n Z.

Ответ: x = - + , n Z.

Пример 3 . Решить уравнение sin²х – 3sinх cos х+2cos²х = 0. (слайд № 8)

Каждый член уравнения имеет одну и ту же степень. Это однородное уравнение второй степени. Разделим обе части уравнения почленно на сos 2 x ≠ 0, получим:

tg 2 x-3tg x+2 = 0. Введем новую переменную z = tg x, получим

z 2 – 3z + 2 =0

z 1 = 1, z 2 = 2

значит, либо tg x = 1, либо tg x = 2

tg x = 1

х = arctg 1 + πn, n Z

x = + πn, n Z

tg x = 2

х = arctg 2 + πn, n Z

Ответ: x = + πn, х = arctg 2 + πn, n Z

4. Закрепление изученного материала (10 мин)

Преподаватель подробно разбирает примеры со слабыми обучающимися на доске, сильные обучающиеся самостоятельно решают в тетрадях.

№ 18.12 (а)

18.24 (а)

18.24 (б)

sin 2 х + 2 sin х cos х – 3 cos² х = 0

tg 2 x + 2 tg x – 3 = 0

z = tg x

z 2 + 2 z – 3 = 0

z 1 = 3; z 2 = - 1.

tg x = 3, х = arctg 3 + πn, n Z

tg x = -1, х = arctg (-1) + πn, n Z

x = + πn, n Z

Ответ: х = arctg 3 + πn,

X = + πn, n Z

sin 2 х = cos 2 х

tg2x = 1

2x = arctg 1 + πn, n Z

2x = + πn, n Z

x = + , n Z

Ответ: x = + , n Z

Tg 3 x = 1

tg 3 x =

3 x = + πn, n Z

x = + , n Z

5. Дифференцированная самостоятельная работа (15 мин)

Преподаватель выдает карточки с заданиями трех уровней: базовый (А), средний (В), повышенный (С). Обучающиеся сами выбирают, примеры какого уровня они будут решать.

Уровень А

2 sin x+ 2 cos x = 0

cos x+ 2 sin x = 0

Уровень В

2 sin x+ 2 cos x = 0

6 sin 2 х - 5 sinх cos х + cos 2 х =0

Уровень С

5 sin 2 х + 2 sinх cos х - cos 2 х =1

2 sin x - 5 cos x = 3

1- 4 sin 2x + 6 cos 2 х = 0

6. Подведение итогов. Рефлексия учебной деятельности на уроке (2 мин)

Ответить на вопросы:

Какие виды тригонометрических уравнений мы изучили?

Как решается однородное уравнение первой степени?

Как решается однородное уравнение второй степени?

Я узнал …

Я научился …

Отметить хорошую работу на уроке отдельных обучающихся, выставить оценки.

7. Домашнее задание. (1 мин)

Сообщить обучающимся домашнее задание, дать краткий инструктаж по его выполнению.

№ 18.12 (в, г), № 18.24 (в,г), № 18.27 (а)

Использованная литература:

    Слайд 2

    «Однородные тригонометрические уравнения»

    1. Уравнение вида а sin x + b cos x = 0, где а ≠0, b ≠0 называют однородным тригонометрическим уравнением первой степени. 2. Уравнение вида а sin 2 х + b sin х cos х + c cos 2 x = 0, где a ≠0, b ≠0, с ≠0 называют однородным тригонометрическим уравнением второй степени. Определение:

    I степени a sinx + b cosx = 0, (a,b ≠ 0). Разделим обе части уравнения почленно на cosx ≠ 0. Получим: a tgx + b = 0 tgx = -b /а простейшее тригонометрическое уравнение При делении однородного уравнения a sinx + b cosx = 0 на cos x ≠ 0 корни этого уравнения не теряются. Метод решения однородных тригонометрических уравнений

    a sin²x + b sinx cosx + c cos²x = 0. 1) если а ≠ 0, разделим обе части уравнения почленно на cos ² x ≠0 Получим: a tg ² x + b tgx + c = 0, решаем методом введения новой переменной z = tgx 2) если а = 0, то Получим: b sinx cosx + c cos ² x =0, решаем методом разложения на множители / При делении однородного уравнения a sin ² x + b sinx cosx + c cos ² x = 0 на cos 2 x ≠ 0 корни этого уравнения не теряются. II степени

    Это однородное уравнение первой степени. Разделим обе части уравнения почленно на cos x , получим: Пример 1. Решить уравнение 2 sin х – 3 cos х = 0

    Это однородное уравнение первой степени. Разделим обе части уравнения почленно на cos 2 x , получим: Пример 2 . Решить уравнение sin 2 х + cos 2 х = 0

    Каждый член уравнения имеет одну и ту же степень. Это однородное уравнение второй степени. Разделим обе части уравнения почленно на с os 2 x ≠ 0, получим: Пример 3 . Решить уравнение sin ² х – 3 sin х cos х+2 cos ² х = 0

    Ответьте на вопросы: - Какие виды тригонометрических уравнений мы изучили? -Как решается однородное уравнение первой степени? - Как решается однородное уравнение второй степени? Подведение итогов

    Я узнал … - Я научился … Рефлексия

    № 18.12 (в, г), № 18.24 (в,г), № 18.27 (а) Домашнее задание.

    Спасибо за урок! МОЛОДЦЫ!

    Предварительный просмотр:

    Самоанализ урока математики преподавателя Ооржак А.М.

    Группа : Мастер растениеводства, 1 курс.

    Тема урока : Однородные тригонометрические уравнения.

    Тип урока : Урок изучения нового материала.

    Цели урока:

    1. Сформировать у обучающихся навыки решения однородных тригонометрических уравнений, рассмотреть методы решения однородных уравнений базового и повышенного уровня сложности.

    2. Развивать логическое мышление, умение делать выводы, умение оценивать результаты выполненных действий.

    3. Воспитывать у обучающихся аккуратность, чувство ответственности, воспитание положительных мотивов учения.

    Урок проводился согласно тематического планирования. Тема урока отражает теоретическую и практическую часть урока и понятна обучающимся. Все этапы урока были направлены на выполнение этих целей с учетом особенностей группы.

    Структура урока.

    1.Организационный момент включал в себя предварительную организацию группы, мобилизующее начало урока, создание психологической комфортности и подготовку обучающихся к активному и сознательному усвоению нового материала. Подготовка группы и каждого обучающегося была проверена мною визуально. Дидактическая задача этапа: П оложительный настрой на урок.

    2. Следующий этап – актуализация опорных знаний обучающихся. Основной задачей этого этапа является: восстановление в памяти обучающихся знаний, необходимых для изучения нового материала. Актуализация была проведена в форме проверки домашнего задания у доски.

    3. (Основной этап урока) Формирование новых знаний. На этом этапе были реализованы следующие дидактические задачи: Обеспечение восприятия, осмысление и первичного запоминания знаний и способов действий, связей и отношений в объекте изучения.

    Этому способствовали: создание проблемной ситуации, метод бесед в сочетании с использованием ИКТ. Показателем эффективности усвоения обучающимися новых знаний является правильность ответов, самостоятельная работа, активное участие обучающихся в работе.

    4.Следующий этап - первичное закрепление материала. Цель которого, установка обратной связи для получения информации о степени понимания нового материала, полноты, правильности его усвоения и для своевременной коррекции обнаруженных ошибок. Для этого я использовала: решение простых однородных тригонометрических уравнений. Здесь использовались задания из учебника, которые соответствуют обязательным результатам обучения. Первичное закрепление материала проводилось в атмосфере доброжелательности, сотрудничества. На этом этапе я работала со слабыми обучающимися, остальные решали самостоятельно, с последующей самопроверкой с доски.

    5. Следующий момент урока был первичный контроль знаний. Дидактическая задача этапа: Выявление качества и уровня овладения знаниями и способами действий, обеспечение их коррекции. Здесь реализовала дифференцированный подход к обучению, предложила ребятам на выбор задания трех уровней: базовый (А), средний (В), повышенный (С). Сделала обход и отметила себе обучающихся, которые выбрали базовый уровень. Эти обучающиеся выполняли работу под контролем преподавателя.

    6. На следующем этапе – подведение итогов, решались задачи анализа и оценки успешности достижения цели. Подводя итоги урока я одновременно осуществила рефлексию учебной деятельности. Обучающиеся усвоили способы решения однородных тригонометрических уравнений. Были выставлены оценки.

    7. Заключительный этап – задание на дом. Дидактическая задача: Обеспечение понимания обучающихся содержания и способов выполнения домашнего задания. Дала краткий инструктаж по выполнению домашнего задания.

    В ходе урока мне довелось реализовать обучающие, развивающие и воспитательные цели. Считаю, что этому способствовало то, что с первых минут урока ребята показали активность. Они были готовы к восприятию новой темы. Атмосфера в группе была психологически благоприятной.


    Стоп! Давай всетаки попытаемся разобраться в этой громоздкой формуле.

    На первом месте должна идти первая переменная в степени с некоторым коэффициентом. В нашем случае это

    В нашем случае это. Как мы выяснили, значит здесь степень при первой переменной - сходится. И вторая переменная в первой степени - на месте. Коэффициент.

    У нас это.

    Первая переменная в степени, и вторая переменная в квадрате, с коэффициентом. Это последний член уравнения.

    Как видишь, наше уравнение подходит под определение в виде формулы.

    Давай рассмотрим вторую (словесную) часть определения.

    У нас две неизвестные и. Здесь сходится.

    Рассмотрим все слагаемые. В них сумма степеней неизвестных должна быть одинакова.

    Сумма степеней равна.

    Сумма степеней равна (при и при).

    Сумма степеней равна.

    Как видишь, все сходится!!!

    Теперь давай потренируемся в определении однородных уравнений.

    Определи, какие из уравнений - однородные:

    Однородные уравнения - уравнения под номерами:

    Рассмотрим отдельно уравнение.

    Если мы разделим каждое слагаемое на разложим каждое слагаемое, то получим

    А это уравнение полностью попадает под определение однородных уравнений.

    Как решать однородные уравнения?

    Пример 2.

    Разделим уравнение на.

    У нас по условию y не может быть равен. Поэтому мы можем смело делить на

    Произведя замену, мы получим простое квадратное уравнение:

    Так как это приведенное квадратное уравнение, воспользуемся теоремой Виета:

    Произведя обратную замену, получаем ответ

    Ответ:

    Пример 3.

    Разделим уравнение на (по условию).

    Ответ:

    Пример 4.

    Найдите, если.

    Здесь нужно не делить, а умножать. Умножим все уравнение на:

    Произведем замену и решим квадратное уравнение:

    Произведя обратную замену, получим ответ:

    Ответ:

    Решение однородных тригонометрических уравнений.

    Решение однородных тригонометрических уравнений ничем не отличается от способов решения, описанных выше. Только здесь, помимо прочего, нужно немного знать тригонометрию. И уметь решать тригонометрические уравнения (для этого можешь прочитать раздел ).

    Рассмотрим такие уравнения на примерах.

    Пример 5.

    Решите уравнение.

    Мы видим типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

    Подобные однородные уравнения решаются не сложно, но перед тем, как разделить уравнения на, рассмотрим случай, когда

    В этом случае уравнение примет вид: , значит. Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому, и на него можно смело делить:

    Так как уравнение приведенное, то по теореме Виета:

    Ответ:

    Пример 6.

    Решите уравнение.

    Как и в примере, нужно разделить уравнение на. Рассмотрим случай, когда:

    Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому.

    Сделаем замену и решим квадратное уравнение:

    Сделаем обратную замену и найдем и:

    Ответ:

    Решение однородных показательных уравнений.

    Однородные уравнения решаются так же, как рассмотренных выше. Если ты забыл, как решать показательные уравнения - посмотри соответствующий раздел ()!

    Рассмотрим несколько примеров.

    Пример 7.

    Решите уравнение

    Представим как:

    Мы видим типичное однородное уравнение, с двумя переменными и суммой степеней. Разделим уравнение на:

    Как можно заметить, произведя замену, мы получим приведенное квадратное уравнение (при этом не нужно опасаться деления на ноль - всегда строго больше нуля):

    По теореме Виета:

    Ответ: .

    Пример 8.

    Решите уравнение

    Представим как:

    Разделим уравнение на:

    Произведем замену и решим квадратное уравнение:

    Корень не удовлетворяет условию. Произведем обратную замену и найдем:

    Ответ:

    ОДНОРОДНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

    Сначала на примере одной задачки напомню что такое однородные уравнения и что из себя представляет решение однородных уравнений.

    Решите задачу:

    Найдите, если.

    Здесь можно заметить любопытную вещь: если поделить каждое слагаемое на, получим:

    То есть, теперь нет отдельных и, - теперь переменной в уравнении является искомая величина. И это обычное квадратное уравнение, которое легко решить с помощью теоремы Виета: произведение корней равно, а сумма - это числа и.

    Ответ:

    Уравнения вида

    называется однородным. То есть, это уравнение с двумя неизвестными, в каждом слагаемом которого одинаковая сумма степеней этих неизвестных. Например, в примере выше эта сумма равна. Решение однородных уравнений осуществляется делением на одну из неизвестных в этой степени:

    И последующей заменой переменных: . Таким образом получаем уравнение степени с одной неизвестной:

    Чаще всего нам будут встречаться уравнения второй степени (то есть квадратные), а их решать мы умеем:

    Отметим, что делить (и умножать) все уравнение на переменную можно только если мы убеждены, что эта переменная не может быть равна нулю! Например, если нас просят найти, сразу понимаем, что, поскольку на делить нельзя. В случаях, когда это не так очевидно, необходимо отдельно проверять случай когда эта переменная равна нулю. Например:

    Решите уравнение.

    Решение:

    Видим здесь типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

    Но, прежде чем разделить на и получить квадратное уравнение относительно, мы должны рассмотреть случай, когда. В этом случае уравнение примет вид: , значит, . Но синус и косинус не могут быть одновременно равны нулю, ведь по основному тригонометрическому тождеству: . Поэтому, и на него можно смело делить:

    Надеюсь, это решение полностью понятно? Если нет, прочитай раздел . Если же непонятно, откуда взялось, тебе нужно вернуться еще раньше - к разделу .

    Реши сам:

    1. Найдите, если.
    2. Найдите, если.
    3. Решите уравнение.

    Здесь я кратко напишу непосредственно решение однородных уравнений:

    Решения:

      Ответ: .

      А здесь надо не делить, а умножать:

      Ответ:

      Если тригонометрические уравнения ты еще не проходил, этот пример можно пропустить.

      Так как здесь нам нужно делить на, убедимся сперва, сто он не равен нулю:

      А это невозможно.

      Ответ: .

    ОДНОРОДНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

    Решение всех однородных уравнений сводится к делению на одну из неизвестных в степени и дальнейшей заменой переменных.

    Алгоритм:

    С помощью этого видеоурока учащиеся смогут изучить тему однородных тригонометрических уравнений.

    Дадим определения:

    1) однородное тригонометрическое уравнение первой степени выглядит как a sin x + b cos x = 0;

    2) однородное тригонометрическое уравнение второй степени выглядит как a sin 2 x + b sin x cos x + c cos 2 x = 0.

    Рассмотрим уравнение a sin x + b cos x = 0. Если а будет равно нулю, то уравнение будет выглядеть как b cos x = 0; если b равно нулю, то уравнение будет выглядеть как a sin x = 0. Это уравнения, которые мы называли простейшими и решали ранее в предыдущих темах.

    Сейчас рассмотрим вариант, когда a и b не равны нулю. С помощью деления частей уравнения на косинус x и осуществим преобразование. Получим a tg x + b = 0, тогда tg x будет равен - b/а.

    Из вышеизложенного следует вывод, что уравнение a sin mx + b cos mx = 0 является однородным тригонометрическим уравнением I степени. Чтобы решить уравнение, его части делят на cos mx.

    Разберем пример 1. Решить 7 sin (x/2) - 5 cos (x/2) = 0. Сначала части уравнения делим на косинус(x/2). Зная, что синус, деленный на косинус, это тангенс, получим 7 tg (x/2) - 5 = 0. Преобразовывая выражение, найдем, что значение тангенса (x/2)равно 5/7. Решение данного уравнения имеет вид х = arctg a + πn, в нашем случае х = 2 arctg (5/7) + 2πn.

    Рассмотрим уравнение a sin 2 x + b sin x cos x + c cos 2 x = 0:

    1) при а равном нулю уравнение будет выглядеть как b sin x cos x + c cos 2 x = 0. Преобразуя, получим выражение cos x (b sin x + c cos x) = 0 и перейдем к решению двух уравнений. После деления частей уравнения на косинус x, получим b tg x + c = 0, а значит tg x = - c/b. Зная, что х = arctg a + πn, то решением в данном случае будет х = arctg (- с/b) + πn.

    2) если а не равно нулю, то, путем деления частей уравнения на косинус в квадрате, получим уравнение, содержащее тангенс, которое будет квадратным. Это уравнение можно решить путем ввода новой переменной.

    3) при с равном нулю уравнение примет вид a sin 2 x + b sin x cos x = 0. Это уравнение можно решить, если вынести синус x за скобку.

    1. посмотреть, есть ли в уравнении a sin 2 x;

    2. если в уравнении член a sin 2 x содержится, то решить уравнение можно путем деления обеих частей на косинус в квадрате и последующим введением новой переменной.

    3. если в уравнении a sin 2 x не содержится, то решить уравнение можно с помощью выноса за скобки cosx.

    Рассмотрим пример 2. Вынесем за скобки косинус и получим два уравнения. Корень первого уравнения x = π/2 + πn. Для решения второго уравнения разделим части этого уравнения на косинус x, путем преобразований получим х = π/3 + πn. Ответ: x = π/2 + πn и х = π/3 + πn.

    Решим пример 3, уравнение вида 3 sin 2 2x - 2 sin 2x cos 2x + 3 cos 2 2x = 2 и найдем его корни, которые принадлежат отрезку от - π до π. Т.к. это уравнение неоднородное, необходимо привести его к однородному виду. Используя формулу sin 2 x + cos 2 x = 1, получим уравнение sin 2 2x - 2 sin 2x cos 2x + cos 2 2x = 0. Разделив все части уравнения на cos 2 x, получим tg 2 2x + 2tg 2x + 1 = 0. Используя ввод новой переменной z = tg 2x, решим уравнение, корнем которого будет z = 1. Тогда tg 2x = 1, откуда следует, что x = π/8 + (πn)/2. Т.к. по условию задачи нужно найти корни, которые принадлежат отрезку от - π до π, решение будет иметь вид - π< x <π. Подставляя найденное значение x в данное выражение и преобразовывая его, получим - 2,25 < n < 1,75. Т.к. n - это целые числа, то решению уравнения удовлетворяют значения n: - 2; - 1; 0; 1. При этих значениях n получим корни решения исходного уравнения: x = (- 7π)/8, x = (- 3π)/8, x =π/8, x = 5π/8.

    ТЕКСТОВАЯ РАСШИФРОВКА:

    Однородные тригонометрические уравнения

    Сегодня мы разберем, как решаются «Однородные тригонометрические уравнения». Это уравнения специального вида.

    Познакомимся с определением.

    Уравнение вида а sin x+ b cos x = 0 (а синус икс плюс бэ косинус икс равно нулю) называют однородным тригонометрическим уравнением первой степени;

    уравнение вида а sin 2 x+ b sin x cos x cos 2 x = 0 (а синус квадрат икс плюс бэ синус икс косинус икс плюс сэ косинус квадрат икс равно нулю) называют однородным тригонометрическим уравнением второй степени.

    Если а=0 , то уравнение примет вид b cos x = 0.

    Еслиb = 0 , то получим а sin x= 0.

    Данные уравнения являются элементарными тригонометрическими, и их решение мы рассматривали на прошлых наших темах

    Рассмотрим тот случай, когда оба коэффициента не равны нулю. Разделим обе части уравнения а sin x + b cos x = 0 почленно на cos x .

    Это мы можем сделать, так как косинус икс отличен от нуля. Ведь, если cos x = 0 , то уравнение а sin x + b cos x = 0 примет вид а sin x = 0 , а ≠ 0, следовательно sin x = 0 . Что невозможно, ведь по основному тригонометрическому тождеству sin 2 x+ cos 2 x =1 .

    Разделив обе части уравнения а sin x + b cos x = 0 почленно на cos x , получим: + =0

    Осуществим преобразования:

    1. Так как = tg x, то = а tg x

    2 сокращаем на cos x , тогда

    Таким образом получим следующее выражение а tg x + b =0 .

    Осуществим преобразование:

    1.перенесем b в правую часть выражения с противоположным знаком

    а tg x =- b

    2. Избавимся от множителя а разделив обе части уравнения на а

    tg x= - .

    Вывод: Уравнение вида а sin m x+ b cos mx = 0 (а синус эм икс плюс бэ косинус эм икс равно нулю) тоже называют однородным тригонометрическим уравнением первой степени. Чтобы решить его, делят обе части на cos mx .

    ПРИМЕР 1. Решить уравнение 7 sin - 5 cos = 0 (семь синус икс на два минус пять косинус икс на два равно нулю)

    Решение. Разделим обе части уравнения почленно на cos, получим

    1. = 7 tg (так как соотношение синуса к косинусу - это тангенс, то семь синус икс на два деленное на косинус икс на два, равно 7 тангенс икс на два)

    2. -5 = -5 (при сокращении cos)

    Таки образом получили уравнение

    7tg - 5 = 0, Преобразуем выражение, перенесем минус пять в правую часть, изменив знак.

    Мы привели уравнение к виду tg t = a, где t=, a =. А так как данное уравнение имеет решение для любого значения а и эти решения имеют вид

    х = arctg a + πn, то решение нашего уравнения будет иметь вид:

    Arctg + πn, найдем х

    х=2 arctg + 2πn.

    Ответ: х=2 arctg + 2πn.

    Перейдем к однородному тригонометрическому уравнению второй степени

    а sin 2 x+b sin x cos x + с cos 2 x= 0.

    Рассмотрим несколько случаев.

    I. Если а=0 , то уравнение примет вид b sin x cos x cos 2 x = 0.

    При решении э то уравнения используем метод разложения на множители. Вынесем cos x за скобку и получим: cos x (b sin x cos x )= 0 . Откуда cos x = 0 или

    b sin x + с cos x= 0. А эти уравнения мы уже умеем решать.

    Разделим обе части уравнения почленно на cosх, получим

    1 (так как соотношение синуса к косинусу - это тангенс).

    Таким образом получаем уравнение: b tg х+с=0

    Мы привели уравнение к виду tg t = a, где t= х, a =. А так как данное уравнение имеет решение для любого значения а и эти решения имеют вид

    х = arctg a + πn, то решение нашего уравнения будет:

    х = arctg + πn, .

    II. Если а≠0 , то обе части уравнения почленно разделим на cos 2 x .

    (Рассуждая аналогично, как и в случае с однородным тригонометрическим уравнением первой степени, косинус икс не может обратится в ноль).

    III. Если с=0 , то уравнение примет вид а sin 2 x + b sin x cos x = 0. Это уравнение решается методом разложения на множители (вынесем sin x за скобку).

    Значит, при решении уравнения а sin 2 x + b sin x cos x cos 2 x = 0 можно действовать по алгоритму:

    ПРИМЕР 2. Решить уравнение sinxcosx - cos 2 x= 0 (синус икс, умноженный на косинус икс минус корень из трех, умноженный на косинус квадрат икс равно нулю).

    Решение. Разложим на множители (вынесем за скобку cosx). Получим

    cos x(sin x - cos x)= 0, т.е. cos x=0 илиsin x - cos x= 0.

    Ответ: х =+ πn, х= + πn.

    ПРИМЕР 3. Решить уравнение 3sin 2 2x - 2 sin2xcos2 x +3cos 2 2x= 2 (три синус квадрат двух икс минус удвоенное произведение синуса двух икс на косинус двух икс плюс три косинус квадрат двух икс) и найти его корни, принадлежащие промежутку (- π; π).

    Решение. Это уравнение не однородное, поэтому проведем преобразования. Число 2, содержащееся в правой части уравнения, заменим произведением 2·1

    Так как по основному тригонометрическому тождеству sin 2 x + cos 2 x =1, то

    2 ∙ 1= 2 ∙ (sin 2 x + cos 2 x) = раскрыв скобки получим: 2 sin 2 x + 2 cos 2 x.

    2 ∙ 1= 2 ∙ (sin 2 x + cos 2 x) =2 sin 2 x + 2 cos 2 x

    Значит уравнение 3sin 2 2x - 2 sin2xcos2 x +3cos 2 2x= 2 примет вид:

    3sin 2 2x - 2 sin 2x cos2 x +3cos 2 2x = 2 sin 2 x + 2 cos 2 x.

    3sin 2 2x - 2 sin 2x cos2 x +3cos 2 2x - 2 sin 2 x - 2 cos 2 x=0,

    sin 2 2x - 2 sin 2x cos2 x +cos 2 2x =0.

    Получили однородное тригонометрическое уравнение второй степени. Применим способ почленного деления на cos 2 2x:

    tg 2 2x - 2tg 2x + 1 = 0.

    Введем новую переменную z= tg2х.

    Имеем z 2 - 2 z + 1 = 0. Это квадратное уравнение. Заметив в левой части формулу сокращенного умножения - квадрат разности (), получим (z - 1) 2 = 0, т.е. z = 1. Вернемся к обратной замене:

    Мы привели уравнение к виду tg t = a, где t= 2х, a =1 . А так как данное уравнение имеет решение для любого значения а и эти решения имеют вид

    х = arctg x a + πn, то решение нашего уравнения будет:

    2х= arctg1 + πn,

    х= + , (икс равно сумме пи на восемь и пи эн на два).

    Нам осталось найти такие значения х, которые содержатся в интервале

    (- π; π), т.е. удовлетворяют двойному неравенству - π х π. Так как

    х= + , то - π + π. Разделим все части этого неравенства на π и умножим на 8, получим

    перенесем единицу в право и в лево, поменяв знак на минус один

    разделим на четыре получим,

    для удобства в дробях выделим целые части

    -

    Этому неравенству удовлетворяют следующие целочисленные n: -2, -1, 0, 1