Разложение многочленов на множители – это тождественное преобразование, в результате которого многочлен преобразуется в произведение нескольких сомножителей – многочленов или одночленов.

Существует несколько способов разложения многочленов на множители.

Способ 1. Вынесение общего множителя за скобку.

Это преобразование основывается на распределительном законе умножения: ac + bc = c(a + b). Суть преобразования заключается в том, чтобы выделить в двух рассматриваемых компонентах общий множитель и «вынести» его за скобки.

Разложим на множители многочлен 28х 3 – 35х 4 .

Решение.

1. Находим у элементов 28х 3 и 35х 4 общий делитель. Для 28 и 35 это будет 7; для х 3 и х 4 – х 3 . Иными словами, наш общий множитель 7х 3 .

2. Каждый из элементов представляем в виде произведения множителей, один из которых
7х 3: 28х 3 – 35х 4 = 7х 3 ∙ 4 – 7х 3 ∙ 5х.

3. Выносим за скобки общий множитель
7х 3: 28х 3 – 35х 4 = 7х 3 ∙ 4 – 7х 3 ∙ 5х = 7х 3 (4 – 5х).

Способ 2. Использование формул сокращенного умножения. «Мастерство» владением этим способом состоит в том, чтобы заметить в выражении одну из формул сокращенного умножения.

Разложим на множители многочлен х 6 – 1.

Решение.

1. К данному выражению мы можем применить формулу разности квадратов. Для этого представим х 6 как (х 3) 2 , а 1 как 1 2 , т.е. 1. Выражение примет вид:
(х 3) 2 – 1 = (х 3 + 1) ∙ (х 3 – 1).

2. К полученному выражению мы можем применить формулу суммы и разности кубов:
(х 3 + 1) ∙ (х 3 – 1) = (х + 1) ∙ (х 2 – х + 1) ∙ (х – 1) ∙ (х 2 + х + 1).

Итак,
х 6 – 1 = (х 3) 2 – 1 = (х 3 + 1) ∙ (х 3 – 1) = (х + 1) ∙ (х 2 – х + 1) ∙ (х – 1) ∙ (х 2 + х + 1).

Способ 3. Группировка. Способ группировки заключается в объединение компонентов многочлена таким образом, чтобы над ними было легко совершать действия (сложение, вычитание, вынесение общего множителя).

Разложим на множители многочлен х 3 – 3х 2 + 5х – 15.

Решение.

1. Сгруппируем компоненты таким образом: 1-ый со 2-ым, а 3-ий с 4-ым
(х 3 – 3х 2) + (5х – 15).

2. В получившемся выражении вынесем общие множители за скобки: х 2 в первом случае и 5 – во втором.
(х 3 – 3х 2) + (5х – 15) = х 2 (х – 3) + 5(х – 3).

3. Выносим за скобки общий множитель х – 3 и получаем:
х 2 (х – 3) + 5(х – 3) = (х – 3)(х 2 + 5).

Итак,
х 3 – 3х 2 + 5х – 15 = (х 3 – 3х 2) + (5х – 15) = х 2 (х – 3) + 5(х – 3) = (х – 3) ∙ (х 2 + 5).

Закрепим материал.

Разложить на множители многочлен a 2 – 7ab + 12b 2 .

Решение.

1. Представим одночлен 7ab в виде суммы 3ab + 4ab. Выражение примет вид:
a 2 – (3ab + 4ab) + 12b 2 .

Раскроем скобки и получим:
a 2 – 3ab – 4ab + 12b 2 .

2. Сгруппируем компоненты многочлена таким образом: 1-ый со 2-ым и 3-ий с 4-ым. Получим:
(a 2 – 3ab) – (4ab – 12b 2).

3. Вынесем за скобки общие множители:
(a 2 – 3ab) – (4ab – 12b 2) = а(а – 3b) – 4b(а – 3b).

4. Вынесем за скобки общий множитель (а – 3b):
а(а – 3b) – 4b(а – 3b) = (а – 3 b) ∙ (а – 4b).

Итак,
a 2 – 7ab + 12b 2 =
= a 2 – (3ab + 4ab) + 12b 2 =
= a 2 – 3ab – 4ab + 12b 2 =
= (a 2 – 3ab) – (4ab – 12b 2) =
= а(а – 3b) – 4b(а – 3b) =
= (а – 3 b) ∙ (а – 4b).

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Рассмотрим на конкретных примерах, как разложить многочлен на множители.

Разложение многочленов будем проводить в соответствии с .

Разложить многочлены на множители:

Проверяем, нет ли общего множителя. есть, он равен 7cd. Выносим его за скобки:

Выражение в скобках состоит из двух слагаемых. Общего множителя уже нет, формулой суммы кубов выражение не является, значит, разложение завершено.

Проверяем, нет ли общего множителя. Нет. Многочлен состоит из трех слагаемых, поэтому проверяем, нет ли формулы полного квадрата. Два слагаемых являются квадратами выражений: 25x²=(5x)², 9y²=(3y)², третье слагаемое равно удвоенному произведению этих выражений:2∙5x∙3y=30xy. Значит, данный многочлен является полным квадратом. Так как удвоенное произведение со знаком «минус», то это — :

Проверяем, нельзя ли вынести общий множитель за скобки. Общий множитель есть, он равен a. Выносим его за скобки:

В скобках — два слагаемых. Проверяем, нет ли формулы разности квадратов или разности кубов. a² — квадрат a, 1=1². Значит, выражение в скобках можно расписать по формуле разности квадратов:

Общий множитель есть, он равен 5. Выносим его за скобки:

в скобках — три слагаемых. Проверяем, не является ли выражение полным квадратом. Два слагаемых — квадраты: 16=4² и a² — квадрат a, третье слагаемое равно удвоенному произведению 4 и a: 2∙4∙a=8a. Следовательно, это — полный квадрат. Так как все слагаемые со знаком «+», выражение в скобках является полным квадратом суммы:

Общий множитель -2x выносим за скобки:

В скобках — сумма двух слагаемых. Проверяем, не является ли данное выражение суммой кубов. 64=4³, x³- куб x. Значит, двучлен можно разложить по формуле :

Общий множитель есть. Но, поскольку многочлен состоит из 4 членов, мы будем сначала , а уже потом выносить за скобки общий множитель. Сгруппируем первое слагаемое с четвертым, в второе — с третьим:

Из первых скобок выносим общий множитель 4a, из вторых — 8b:

Общего множителя пока нет. Чтобы его получить, из вторых скобок вынесем за скобки «-«, при этом каждый знак в скобках изменится на противоположный:

Теперь общий множитель (1-3a) вынесем за скобки:

Во вторых скобках есть общий множитель 4 (этот тот самый множитель, который мы не стали выносить за скобки в начале примера):

Поскольку многочлен состоит из четырех слагаемых, выполняем группировку. Сгруппируем первое слагаемое со вторым, третье — с четвертым:

В первых скобках общего множителя нет, но есть формула разности квадратов, во вторых скобках общий множитель -5:

Появился общий множитель (4m-3n). Выносим его за скобки.

Разложение на множители уравнения – это процесс нахождения таких членов или выражений, которые, будучи перемноженными, приводят к начальному уравнению. Разложение на множители является полезным навыком для решения основных алгебраических задач, и становится практически необходимым при работе с квадратными уравнениями и другими многочленами. Разложение на множители используется для упрощения алгебраических уравнений, чтобы облегчить их решение. Разложение на множители может помочь вам исключить определенные возможные ответы быстрее, чем вы это сделаете, решая уравнение вручную.

Шаги

Разложение на множители чисел и основных алгебраических выражений

  1. Разложение на множители чисел. Концепция разложения на множители проста, но на практике разложение на множители может оказаться непростой задачей (если дано сложное уравнение). Поэтому для начала рассмотрим концепцию разложения на множители на примере чисел, продолжим с простыми уравнениями, а затем перейдем к сложным уравнениям. Множители данного числа – это числа, которые при перемножении дают исходное число. Например, множителями числа 12 являются числа: 1, 12, 2, 6, 3, 4, так как 1*12=12, 2*6=12, 3*4=12.

    • Аналогично, вы можете рассматривать множители числа как его делители, то есть числа, на которые делится данное число.
    • Найдите все множители числа 60. Мы часто используем число 60 (например, 60 минут в часе, 60 секунд в минуте и т.д.) и у этого числа довольно большое количество множителей.
      • Множители 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60.
  2. Запомните: члены выражения, содержащие коэффициент (число) и переменную, также могут быть разложены на множители. Для этого найдите множители коэффициента при переменной. Зная, как разложить на множители члены уравнений, можно легко упростить данное уравнение.

    • Например, член 12x может быть записан в виде произведения 12 и х. Вы также можете записать 12x как 3(4x), 2(6x) и т.д., разложив число 12 на наиболее подходящие вам множители.
      • Вы можете раскладывать 12x несколько раз подряд. Другими словами, вы не должны останавливаться на 3(4x) или 2(6x); продолжите разложение: 3(2(2x)) или 2(3(2x)) (очевидно, что 3(4x)=3(2(2x)) и т.д.)
  3. Примените распределительное свойство умножения для разложения на множители алгебраических уравнений. Зная, как разложить на множители числа и члены выражения (коэффициенты с переменными), вы можете упростить несложные алгебраические уравнения, найдя общий множитель числа и члена выражения. Обычно для упрощения уравнения необходимо найти наибольший общий делитель (НОД). Такое упрощение возможно благодаря распределительному свойству умножения: для любых чисел а, b, с верно равенство a(b+c) = ab+ac.

    • Пример. Разложите на множители уравнение 12х + 6. Во-первых, найдите НОД 12x и 6. 6 является наибольшим числом, которое делит и 12x, и 6, поэтому вы можете разложить данное уравнение на: 6(2x+1).
    • Этот процесс также верен для уравнений, в которых есть отрицательные и дробные члены. Например, х/2+4 может быть разложено на 1/2(х+8); например, -7x+(-21) может быть разложено на -7(х+3).

    Разложение на множители квадратных уравнений

    1. Убедитесь, что уравнение дано в квадратичной форме (ax 2 + bx + c = 0). Квадратные уравнения имеют вид: ax 2 + bx + c = 0, где а, b, с - числовые коэффициенты отличные от 0. Если вам дано уравнение с одной переменной (х) и в этом уравнении есть один или несколько членов с переменной второго порядка, вы можете перенести все члены уравнения на одну сторону уравнения и приравнять его к нулю.

      • Например, дано уравнение: 5x 2 + 7x - 9 = 4x 2 + x – 18. Оно может быть преобразовано в уравнение x 2 + 6x + 9 = 0, которое является квадратным уравнением.
      • Уравнения с переменной х больших порядков, например, x 3 , x 4 и т.д. не являются квадратными уравнениями. Это кубические уравнения, уравнения четвертого порядка и так далее (только если такие уравнения не могут быть упрощены до квадратных уравнений с переменной х в степени 2).
    2. Квадратные уравнения, где а = 1, раскладываются на (x+d)(x+e), где d*е=с и d+е=b. Если данное вам квадратное уравнение имеет вид: x 2 + bx + c = 0 (то есть коэффициент при x 2 равен 1), то такое уравнение можно (но не гарантированно) разложить на вышеуказанные множители. Для этого нужно найти два числа, которые при перемножении дают «с», а при сложении – «b». Как только вы найдете такие два числа (d и е), подставьте их в следующее выражение: (x+d)(x+e), которое при раскрытии скобок приводит к исходному уравнению.

      • Например, дано квадратное уравнение x 2 + 5x + 6 = 0. 3*2=6 и 3+2=5, поэтому вы можете разложить данное уравнение на (х+3)(х+2).
      • В случае отрицательных членов внесите следующие незначительные изменения в процесс разложения на множители:
        • Если квадратное уравнение имеет вид x 2 -bx+c, то оно раскладывается на: (х-_)(х-_).
        • Если квадратное уравнение имеет вид x 2 -bx-c, то оно раскладывается на: (х+_)(х-_).
      • Примечание: пробелы могут быть заменены на дроби или десятичные числа. Например, уравнение x 2 + (21/2)x + 5 = 0 раскладывается на (х+10)(х+1/2).
    3. Разложение на множители методом проб и ошибок. Несложные квадратные уравнения можно разложить на множители, просто подставляя числа в возможные решения до тех пор, пока вы не найдете правильного решения. Если уравнение имеет вид ax 2 +bx+c, где a>1, возможные решения записываются в виде (dx +/- _)(ex +/- _), где d и е - числовые коэффициенты отличные от нуля, которые при перемножении дают а. Либо d, либо e (или оба коэффициента) могут быть равны 1. Если оба коэффициента равны 1, то воспользуйтесь способом, описанным выше.

      • Например, дано уравнение 3x 2 - 8x + 4. Здесь 3 имеет только два множителя (3 и 1), поэтому возможные решения записываются в виде (3x +/- _)(х +/- _). В этом случае, подставив вместо пробелов -2, вы найдете правильный ответ: -2*3x=-6x и -2*х=-2x; - 6x+(-2x)=-8x и -2*-2=4, то есть такое разложение при раскрытии скобок приведет к членам исходного уравнения.

Для того, чтобы разложить на множители, необходимо упрощать выражения. Это необходимо для того, чтобы можно было в дальнейшем сократить. Разложение многочлена имеет смысл тогда, когда его степень не ниже второй. Многочлен с первой степенью называют линейным.

Yandex.RTB R-A-339285-1

Статья раскроет все понятия разложения, теоретические основы и способы разложений многочлена на множители.

Теория

Теорема 1

Когда любой многочлен со степенью n , имеющие вид P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , представляют в виде произведения с постоянным множителем со старшей степенью a n и n линейных множителей (x - x i) , i = 1 , 2 , … , n , тогда P n (x) = a n (x - x n) (x - x n - 1) · . . . · (x - x 1) , где x i , i = 1 , 2 , … , n – это и есть корни многочлена.

Теорема предназначена для корней комплексного типа x i , i = 1 , 2 , … , n и для комплексных коэффициентов a k , k = 0 , 1 , 2 , … , n . Это и есть основа любого разложения.

Когда коэффициенты вида a k , k = 0 , 1 , 2 , … , n являются действительными числами, тогда комплексные корни, которые будут встречаться сопряженными парами. Например, корни x 1 и x 2 , относящиеся к многочлену вида P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 считаются комплексно сопряженным, тогда другие корни являются действительными, отсюда получаем, что многочлен примет вид P n (x) = a n (x - x n) (x - x n - 1) · . . . · (x - x 3) x 2 + p x + q , где x 2 + p x + q = (x - x 1) (x - x 2) .

Замечание

Корни многочлена могут повторяться. Рассмотрим доказательство теоремы алгебры, следствия из теоремы Безу.

Основная теорема алгебры

Теорема 2

Любой многочлен со степенью n имеет как минимум один корень.

Теорема Безу

После того, как произвели деление многочлена вида P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 на (x - s) , тогда получаем остаток, который равен многочлену в точке s , тогда получим

P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = (x - s) · Q n - 1 (x) + P n (s) , где Q n - 1 (x) является многочленом со степенью n - 1 .

Следствие из теоремы Безу

Когда корень многочлена P n (x) считается s , тогда P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = (x - s) · Q n - 1 (x) . Данное следствие является достаточным при употреблении для описания решения.

Разложение на множители квадратного трехчлена

Квадратный трехчлен вида a x 2 + b x + c можно разложить на линейные множители. тогда получим, что a x 2 + b x + c = a (x - x 1) (x - x 2) , где x 1 и x 2 - это корни (комплексные или действительные).

Отсюда видно, что само разложение сводится к решению квадратного уравнения впоследствии.

Пример 1

Произвести разложение квадратного трехчлена на множители.

Решение

Необходимо найти корни уравнения 4 x 2 - 5 x + 1 = 0 . Для этого необходимо найти значение дискриминанта по формуле, тогда получим D = (- 5) 2 - 4 · 4 · 1 = 9 . Отсюда имеем, что

x 1 = 5 - 9 2 · 4 = 1 4 x 2 = 5 + 9 2 · 4 = 1

Отсюда получаем, что 4 x 2 - 5 x + 1 = 4 x - 1 4 x - 1 .

Для выполнения проверки нужно раскрыть скобки. Тогда получим выражение вида:

4 x - 1 4 x - 1 = 4 x 2 - x - 1 4 x + 1 4 = 4 x 2 - 5 x + 1

После проверки приходим к исходному выражению. То есть можно сделать вывод, что разложение выполнено верно.

Пример 2

Произвести разложение на множители квадратный трехчлен вида 3 x 2 - 7 x - 11 .

Решение

Получим, что необходимо вычислить получившееся квадратное уравнение вида 3 x 2 - 7 x - 11 = 0 .

Чтобы найти корни, надо определить значение дискриминанта. Получим, что

3 x 2 - 7 x - 11 = 0 D = (- 7) 2 - 4 · 3 · (- 11) = 181 x 1 = 7 + D 2 · 3 = 7 + 181 6 x 2 = 7 - D 2 · 3 = 7 - 181 6

Отсюда получаем, что 3 x 2 - 7 x - 11 = 3 x - 7 + 181 6 x - 7 - 181 6 .

Пример 3

Произвести разложение многочлена 2 x 2 + 1 на множители.

Решение

Теперь нужно решить квадратное уравнение 2 x 2 + 1 = 0 и найти его корни. Получим, что

2 x 2 + 1 = 0 x 2 = - 1 2 x 1 = - 1 2 = 1 2 · i x 2 = - 1 2 = - 1 2 · i

Эти корни называют комплексно сопряженными, значит само разложение можно изобразить как 2 x 2 + 1 = 2 x - 1 2 · i x + 1 2 · i .

Пример 4

Произвести разложение квадратного трехчлена x 2 + 1 3 x + 1 .

Решение

Для начала необходимо решить квадратное уравнение вида x 2 + 1 3 x + 1 = 0 и найти его корни.

x 2 + 1 3 x + 1 = 0 D = 1 3 2 - 4 · 1 · 1 = - 35 9 x 1 = - 1 3 + D 2 · 1 = - 1 3 + 35 3 · i 2 = - 1 + 35 · i 6 = - 1 6 + 35 6 · i x 2 = - 1 3 - D 2 · 1 = - 1 3 - 35 3 · i 2 = - 1 - 35 · i 6 = - 1 6 - 35 6 · i

Получив корни, запишем

x 2 + 1 3 x + 1 = x - - 1 6 + 35 6 · i x - - 1 6 - 35 6 · i = = x + 1 6 - 35 6 · i x + 1 6 + 35 6 · i

Замечание

Если значение дискриминанта отрицательное, то многочлены останутся многочленами второго порядка. Отсюда следует, что раскладывать их не будем на линейные множители.

Способы разложения на множители многочлена степени выше второй

При разложении предполагается универсальный метод. Большинство всех случаев основано на следствии из теоремы Безу. Для этого необходимо подбирать значение корня x 1 и понизить его степень при помощи деления на многочлена на 1 делением на (x - x 1) . Полученный многочлен нуждается в нахождении корня x 2 , причем процесс поиска цикличен до тех пор, пока не получим полное разложение.

Если корень не нашли, тогда применяются другие способы разложения на множители: группировка, дополнительные слагаемые. Данная тема полагает решение уравнений с высшими степенями и целыми коэффициентами.

Вынесение общего множителя за скобки

Рассмотрим случай, когда свободный член равняется нулю, тогда вид многочлена становится как P n (x) = a n x n + a n - 1 x n - 1 + . . . + a 1 x .

Видно, что корень такого многочлена будет равняться x 1 = 0 , тогда можно представить многочлен в виде выражения P n (x) = a n x n + a n - 1 x n - 1 + . . . + a 1 x = = x (a n x n - 1 + a n - 1 x n - 2 + . . . + a 1)

Данный способ считается вынесением общего множителя за скобки.

Пример 5

Выполнить разложение многочлена третьей степени 4 x 3 + 8 x 2 - x на множители.

Решение

Видим, что x 1 = 0 - это корень заданного многочлена, тогда можно произвести вынесение х за скобки всего выражения. Получаем:

4 x 3 + 8 x 2 - x = x (4 x 2 + 8 x - 1)

Переходим к нахождению корней квадратного трехчлена 4 x 2 + 8 x - 1 . Найдем дискриминант и корни:

D = 8 2 - 4 · 4 · (- 1) = 80 x 1 = - 8 + D 2 · 4 = - 1 + 5 2 x 2 = - 8 - D 2 · 4 = - 1 - 5 2

Тогда следует, что

4 x 3 + 8 x 2 - x = x 4 x 2 + 8 x - 1 = = 4 x x - - 1 + 5 2 x - - 1 - 5 2 = = 4 x x + 1 - 5 2 x + 1 + 5 2

Для начала примем за рассмотрение способ разложения, содержащий целые коэффициенты вида P n (x) = x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , где коэффициента при старшей степени равняется 1 .

Когда многочлен имеет целые корни, тогда их считают делителями свободного члена.

Пример 6

Произвести разложение выражения f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 .

Решение

Рассмотрим, имеются ли целые корни. Необходимо выписать делители числа - 18 . Получим, что ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18 . Отсюда следует, что данный многочлен имеет целые корни. Можно провести проверку по схеме Горнера. Она очень удобная и позволяет быстро получить коэффициенты разложения многочлена:

Отсюда следует, что х = 2 и х = - 3 – это корни исходного многочлена, который можно представить как произведение вида:

f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 = (x - 2) (x 3 + 5 x 2 + 9 x + 9) = = (x - 2) (x + 3) (x 2 + 2 x + 3)

Переходим к разложению квадратного трехчлена вида x 2 + 2 x + 3 .

Так как дискриминант получаем отрицательный, значит, действительных корней нет.

Ответ: f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 = (x - 2) (x + 3) (x 2 + 2 x + 3)

Замечание

Допускается использование подбором корня и деление многочлена на многочлен вместо схемы Горнера. Перейдем к рассмотрению разложения многочлена, содержащим целые коэффициенты вида P n (x) = x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , старший из которых на равняется единице.

Этот случай имеет место быть для дробно-рациональных дробей.

Пример 7

Произвести разложение на множители f (x) = 2 x 3 + 19 x 2 + 41 x + 15 .

Решение

Необходимо выполнить замену переменной y = 2 x , следует переходить к многочлену с коэффициентами равными 1 при старшей степени. Необходимо начать с умножения выражения на 4 . Получаем, что

4 f (x) = 2 3 · x 3 + 19 · 2 2 · x 2 + 82 · 2 · x + 60 = = y 3 + 19 y 2 + 82 y + 60 = g (y)

Когда получившаяся функция вида g (y) = y 3 + 19 y 2 + 82 y + 60 имеет целые корни, тогда их нахождение среди делителей свободного члена. Запись примет вид:

± 1 , ± 2 , ± 3 , ± 4 , ± 5 , ± 6 , ± 10 , ± 12 , ± 15 , ± 20 , ± 30 , ± 60

Перейдем к вычислению функции g (y) в этих точка для того, чтобы получить в результате ноль. Получаем, что

g (1) = 1 3 + 19 · 1 2 + 82 · 1 + 60 = 162 g (- 1) = (- 1) 3 + 19 · (- 1) 2 + 82 · (- 1) + 60 = - 4 g (2) = 2 3 + 19 · 2 2 + 82 · 2 + 60 = 308 g (- 2) = (- 2) 3 + 19 · (- 2) 2 + 82 · (- 2) + 60 = - 36 g (3) = 3 3 + 19 · 3 2 + 82 · 3 + 60 = 504 g (- 3) = (- 3) 3 + 19 · (- 3) 2 + 82 · (- 3) + 60 = - 42 g (4) = 4 3 + 19 · 4 2 + 82 · 4 + 60 = 756 g (- 4) = (- 4) 3 + 19 · (- 4) 2 + 82 · (- 4) + 60 = - 28 g (5) = 5 3 + 19 · 5 2 + 82 · 5 + 60 = 1070 g (- 5) = (- 5) 3 + 19 · (- 5) 2 + 82 · (- 5) + 60

Получаем, что у = - 5 – это корень уравнения вида y 3 + 19 y 2 + 82 y + 60 , значит, x = y 2 = - 5 2 - это корень исходной функции.

Пример 8

Необходимо произвести деление столбиком 2 x 3 + 19 x 2 + 41 x + 15 на x + 5 2 .

Решение

Запишем и получим:

2 x 3 + 19 x 2 + 41 x + 15 = x + 5 2 (2 x 2 + 14 x + 6) = = 2 x + 5 2 (x 2 + 7 x + 3)

Проверка делителей займет много времени, поэтому выгодней предпринять разложение на множители полученного квадратного трехчлена вида x 2 + 7 x + 3 . Приравниванием к нулю и находим дискриминант.

x 2 + 7 x + 3 = 0 D = 7 2 - 4 · 1 · 3 = 37 x 1 = - 7 + 37 2 x 2 = - 7 - 37 2 ⇒ x 2 + 7 x + 3 = x + 7 2 - 37 2 x + 7 2 + 37 2

Отсюда следует, что

2 x 3 + 19 x 2 + 41 x + 15 = 2 x + 5 2 x 2 + 7 x + 3 = = 2 x + 5 2 x + 7 2 - 37 2 x + 7 2 + 37 2

Искусственные приемы при разложении многочлена на множители

Рациональные корни не присущи всем многочленам. Для этого необходимо пользоваться специальными способами для нахождения множителей. Но не все многочлены можно разложить или представить в виде произведения.

Способ группировки

Бывают случаи, когда можно сгруппировывать слагаемые многочлена для нахождения общего множителя и вынесения его за скобки.

Пример 9

Произвести разложение многочлена x 4 + 4 x 3 - x 2 - 8 x - 2 на множители.

Решение

Потому как коэффициенты – целые числа, тогда корни предположительно тоже могут быть целыми. Для проверки возьмем значения 1 , - 1 , 2 и - 2 для того, чтобы вычислить значение многочлена в этих точках. Получаем, что

1 4 + 4 · 1 3 - 1 2 - 8 · 1 - 2 = - 6 ≠ 0 (- 1) 4 + 4 · (- 1) 3 - (- 1) 2 - 8 · (- 1) - 2 = 2 ≠ 0 2 4 + 4 · 2 3 - 2 2 - 8 · 2 - 2 = 26 ≠ 0 (- 2) 4 + 4 · (- 2) 3 - (- 2) 2 - 8 · (- 2) - 2 = - 6 ≠ 0

Отсюда видно, что корней нет, необходимо использовать другой способ разложения и решения.

Необходимо провести группировку:

x 4 + 4 x 3 - x 2 - 8 x - 2 = x 4 + 4 x 3 - 2 x 2 + x 2 - 8 x - 2 = = (x 4 - 2 x 2) + (4 x 3 - 8 x) + x 2 - 2 = = x 2 (x 2 - 2) + 4 x (x 2 - 2) + x 2 - 2 = = (x 2 - 2) (x 2 + 4 x + 1)

После группировки исходного многочлена необходимо представить его как произведение двух квадратных трехчленов. Для этого нам понадобится произвести разложение на множители. получаем, что

x 2 - 2 = 0 x 2 = 2 x 1 = 2 x 2 = - 2 ⇒ x 2 - 2 = x - 2 x + 2 x 2 + 4 x + 1 = 0 D = 4 2 - 4 · 1 · 1 = 12 x 1 = - 4 - D 2 · 1 = - 2 - 3 x 2 = - 4 - D 2 · 1 = - 2 - 3 ⇒ x 2 + 4 x + 1 = x + 2 - 3 x + 2 + 3

x 4 + 4 x 3 - x 2 - 8 x - 2 = x 2 - 2 x 2 + 4 x + 1 = = x - 2 x + 2 x + 2 - 3 x + 2 + 3

Замечание

Простота группировки не говорит о том, что выбрать слагаемы достаточно легко. Определенного способа решения не существует, поэтому необходимо пользоваться специальными теоремами и правилами.

Пример 10

Произвести разложение на множители многочлен x 4 + 3 x 3 - x 2 - 4 x + 2 .

Решение

Заданный многочлен не имеет целых корней. Следует произвести группировку слагаемых. Получаем, что

x 4 + 3 x 3 - x 2 - 4 x + 2 = = (x 4 + x 3) + (2 x 3 + 2 x 2) + (- 2 x 2 - 2 x) - x 2 - 2 x + 2 = = x 2 (x 2 + x) + 2 x (x 2 + x) - 2 (x 2 + x) - (x 2 + 2 x - 2) = = (x 2 + x) (x 2 + 2 x - 2) - (x 2 + 2 x - 2) = (x 2 + x - 1) (x 2 + 2 x - 2)

После разложения на множители получим, что

x 4 + 3 x 3 - x 2 - 4 x + 2 = x 2 + x - 1 x 2 + 2 x - 2 = = x + 1 + 3 x + 1 - 3 x + 1 2 + 5 2 x + 1 2 - 5 2

Использование формул сокращенного умножения и бинома Ньютона для разложения многочлена на множители

Внешний вид зачастую не всегда дает понять, каким способом необходимо воспользоваться при разложении. После того, как были произведены преобразования, можно выстроить строчку, состоящую из треугольника Паскаля, иначе их называют биномом Ньютона.

Пример 11

Произвести разложение многочлена x 4 + 4 x 3 + 6 x 2 + 4 x - 2 на множители.

Решение

Необходимо выполнить преобразование выражения к виду

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3

На последовательность коэффициентов суммы в скобках указывает выражение x + 1 4 .

Значит, имеем x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 .

После применения разности квадратов, получим

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 = = x + 1 4 - 3 = x + 1 2 - 3 x + 1 2 + 3

Рассмотрим выражение, которое находится во второй скобке. Понятно, что там коней нет, поэтому следует применить формулу разности квадратов еще раз. Получаем выражение вида

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 = = x + 1 4 - 3 = x + 1 2 - 3 x + 1 2 + 3 = = x + 1 - 3 4 x + 1 + 3 4 x 2 + 2 x + 1 + 3

Пример 12

Произвести разложение на множители x 3 + 6 x 2 + 12 x + 6 .

Решение

Займемся преобразованием выражения. Получаем, что

x 3 + 6 x 2 + 12 x + 6 = x 3 + 3 · 2 · x 2 + 3 · 2 2 · x + 2 3 - 2 = (x + 2) 3 - 2

Необходимо применить формулу сокращенного умножения разности кубов. Получаем:

x 3 + 6 x 2 + 12 x + 6 = = (x + 2) 3 - 2 = = x + 2 - 2 3 x + 2 2 + 2 3 x + 2 + 4 3 = = x + 2 - 2 3 x 2 + x 2 + 2 3 + 4 + 2 2 3 + 4 3

Способ замены переменной при разложении многочлена на множители

При замене переменной производится понижение степени и разложение многочлена на множители.

Пример 13

Произвести разложение на множители многочлена вида x 6 + 5 x 3 + 6 .

Решение

По условию видно, что необходимо произвести замену y = x 3 . Получаем:

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6

Корни полученного квадратного уравнения равны y = - 2 и y = - 3 , тогда

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3

Необходимо применить формулу сокращенного умножения суммы кубов. Получим выражения вида:

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3 = = x + 2 3 x 2 - 2 3 x + 4 3 x + 3 3 x 2 - 3 3 x + 9 3

То есть получили искомое разложение.

Рассмотренные выше случаи помогут в рассмотрении и разложении многочлена на множители разными способами.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Калькулятор онлайн.
Выделение квадрата двучлена и разложение на множители квадратного трехчлена.

Эта математическая программа выделяет квадрат двучлена из квадратного трехчлена , т.е. делает преобразование вида:
\(ax^2+bx+c \rightarrow a(x+p)^2+q \) и раскладывает на множители квадратный трехчлен : \(ax^2+bx+c \rightarrow a(x+n)(x+m) \)

Т.е. задачи сводятся к нахождению чисел \(p, q \) и \(n, m \)

Программа не только даёт ответ задачи, но и отображает процесс решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного трехчлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5x +1/7x^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} x + \frac{1}{7}x^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении введённое выражение сначала упрощается.
Например: 1/2(x-1)(x+1)-(5x-10&1/2)

Пример подробного решения

Выделение квадрата двучлена. $$ ax^2+bx+c \rightarrow a(x+p)^2+q $$ $$2x^2+2x-4 = $$ $$2x^2 +2 \cdot 2 \cdot\left(\frac{1}{2} \right)\cdot x+2 \cdot \left(\frac{1}{2} \right)^2-\frac{9}{2} = $$ $$2\left(x^2 + 2 \cdot\left(\frac{1}{2} \right)\cdot x + \left(\frac{1}{2} \right)^2 \right)-\frac{9}{2} = $$ $$2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Ответ: $$2x^2+2x-4 = 2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Разложение на множители. $$ ax^2+bx+c \rightarrow a(x+n)(x+m) $$ $$2x^2+2x-4 = $$
$$ 2\left(x^2+x-2 \right) = $$
$$ 2 \left(x^2+2x-1x-1 \cdot 2 \right) = $$ $$ 2 \left(x \left(x +2 \right) -1 \left(x +2 \right) \right) = $$ $$ 2 \left(x -1 \right) \left(x +2 \right) $$ Ответ: $$2x^2+2x-4 = 2 \left(x -1 \right) \left(x +2 \right) $$

Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Выделение квадрата двучлена из квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+p) 2 +q, где p и q - действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена .

Выделим из трехчлена 2x 2 +12x+14 квадрат двучлена.


\(2x^2+12x+14 = 2(x^2+6x+7) \)


Для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 3 2 . Получим:
$$ 2(x^2+2 \cdot 3 \cdot x + 3^2-3^2+7) = 2((x+3)^2-3^2+7) = $$ $$ = 2((x+3)^2-2) = 2(x+3)^2-4 $$

Т.о. мы выделили квадрат двучлена из квадратного трехчлена , и показоли, что:
$$ 2x^2+12x+14 = 2(x+3)^2-4 $$

Разложение на множители квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+n)(x+m), где n и m - действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена .

Покажем на примере как это преобразование делается.

Разложим квадратный трехчлен 2x 2 +4x-6 на множители.

Вынесем за скобки коэффициент a, т.е. 2:
\(2x^2+4x-6 = 2(x^2+2x-3) \)

Преобразуем выражение в скобках.
Для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. Получим:
$$ = 2(x^2+3 \cdot x -1 \cdot x -1 \cdot 3) = 2(x(x+3)-1 \cdot (x+3)) = $$
$$ = 2(x-1)(x+3) $$

Т.о. мы разложили на множители квадратный трехчлен , и показоли, что:
$$ 2x^2+4x-6 = 2(x-1)(x+3) $$

Заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому трехчлену имеет корни.
Т.е. в нашем случае разложить на множители трехчлен 2x 2 +4x-6 возможно, если квадратное уравнение 2x 2 +4x-6 =0 имеет корни. В процессе разложения на множители мы установили, что уравнение 2x 2 +4x-6 =0 имеет два корня 1 и -3, т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство.

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач