Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости (рис. 6.3).

Если прямая перпендикулярна плоскости, то она будет перпендикулярна любой прямой, лежащей в этой плоскости. Из множества этих прямых при построении перпендикуляров к плоскости выбирают горизонталь и фронталь плоскости. В этом случае, пользуясь свойством проецирования прямого угла на комплексном чертеже, фронтальную проекцию перпендикуляра проводим под углом 90 0 к фронтальной проекции фронтали, а горизонтальную проекцию перпендикуляра – под углом 90° к горизонтальной проекции горизонтали.

Рассмотрим алгоритм построения перпендикуляра n к плоскости Р(D АВС) (табл. 6.6).

Таблица 6.6

Алгоритм построения перпендикуляра к плоскости

2. Строим фронталь в плоскости Р(D АВС) – f (f 1 f 2)

3. Строим перпендикуляр n к плоскости Р(D АВС). Для этого через точку D 2 проводим n 2 , перпендикулярно f 2 , а через D 1 проводим n 1 , перпендикулярно h 1 .

n (n 1 n 2) ^Р (DАВС), так как

n 1 ^h 1 ; h 1 P 1 (DА 1 В 1 С 1)

n 2 ^f 2 ; f 2 P 2 (DА 2 В 2 С 2)

§ 6. Перпендикулярность двух плоскостей

Две плоскости будут перпендикулярны друг к другу, если одна из них проходит через прямую, перпендикулярную другой плоскости (рис. 6.4).

АВ b , то есть АВ принадлежит плоскости b и АВ ^ плоскости a . Плоскость b ^ плоскости a .

Рассмотрим это положение на комплексном чертеже (табл. 6.7), где будет показано построение плоскости Р, проходящей через прямую l и перпендикулярной плоскости, заданной треугольником Q(D АВС) (табл. 6.7).

Таблица 6.7

Алгоритм построения плоскости, перпендикулярной данной

Вербальная форма

Графическая форма

1. Известно, что для построения прямой, перпендикулярной плоскости, необходимо построить горизонталь и фронталь в плоскости.

а) Заметим, что построение перпендикуляра упрощается, так как стороны плоскости Q(D АВС) являются прямыми уровня:

АВ (А 1 В 1 ; А 2 В 2) – фронталь

АС (А 1 С 1 ; А 2 С 2) – горизонталь.

б) Возьмем на прямой l произвольную точку К

2. Через точку К, которая принадлежит прямой l, проводим прямую n ^ Q, т.е.

n 1 ^ A 1 C 1 и n 2 ^ A 2 В 2 .

Искомая плоскость будет определяться двумя пересекающимися прямыми, одна из которых задана – l , а другая – n является перпендикулярной к заданной плоскости:

P(l n)^ Q (D ABC)

Выводы

а) не иметь общих точек;

б) иметь хотя бы одну общую точку;

в) иметь множество общих точек.

В зависимости от этого прямая может принадлежать плоскости, быть ей параллельна, пересекаться с данной плоскостью и, как частный случай, быть ей перпендикулярна.

2. Две плоскости в пространстве могут быть параллельны друг другу, пересекаться между собой и, как частный случай, быть взаимно перпендикулярны.

3. Две пересекающиеся плоскости имеют одну общую прямую – линию пересечения.

5. Для построения перпендикуляра к плоскости необходимо использовать свойства проецирования прямого угла.

В планиметрии построение перпендикуляра основано на том, что он соединяет данную точку и точку, симметричную с ней относительно рассматриваемой прямой. Если мы хотим составить понятие о перпендикуляре к плоскости, то можно взять любую точку, лежащую вне этой плоскости, отразить эту точку в данной плоскости, как в зеркале, и соединить данную точку с ее отражением; тогда получим перпендикуляр к плоскости. Следует, однако, заметить, что в случае отражения относительно прямой все дело сводилось к сгибу плоскости вдоль данной прямой, т. е. к движению, хотя и производимому в пространстве. Отражение же в плоскости уже не сводится к движению. Поэтому изложение вопроса о перпендикуляре к плоскости сложнее соответствующего изложения вопроса о перпендикуляре к прямой в планиметрии, оно опирается на следующее известное читателю

Определение. Прямая называется перпендикуляром к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Так как угол между двумя скрещивающимися прямыми равен по определению углу между пересекающимися прямыми, параллельными данным, то прямая а (рис. 337), перпендикулярная ко всем прямым плоскости К, проходящим через точку пересечения прямой а с плоскостью К, будет перпендикулярна и к плоскости К. Действительно, она образует прямой угол с любой прямой в плоскости так как она перпендикулярна к прямой b, проведенной в этой плоскости через точку параллельно b.

В действительности имеет место гораздо более простой Признак перпендикулярности прямой и плоскости. Прямая, перпендикулярная к двум пересекающимся прямым плоскости, перпендикулярна к этой плоскости.

Доказательство. Пусть на рис. 338 прямая а перпендикулярна к двум пересекающимся прямым , лежащим в плоскости Х. В силу сделанного выше замечания мы можем, не нарушая общности, предположить, что прямая а проходит через точку пересечения прямых тип. Требуется доказать, что прямая а перпендикулярна и к любой прямой плоскости в силу того же замечания можно предположить, что прямая проходит через точку . Сделаем следующие вспомогательные построения: на прямой а возьмем произвольную точку М и точку М на продолжении по другую сторону плоскости Я на расстоянии от точки Три прямые в плоскости X пересечем какой-либо прямой с, не проходящей через точки пересечения обозначим соответственно Р, Q, R. Соединим точки М и М с точками Р, Q, R. Треугольники равны, так как они прямоугольные, катеты равны по построению, а катет общий; значит, равны и их гипотенузы: (можно еще проще заметить, что МР - МР, как наклонные с равными проекциями). Отрезки MQ, MQ также равны. Значит, равны треугольники MPQ и MPQ (по трем сторонам). Отсюда заключаем, что равны треугольники MQR и у них между равными сторонами MQ и MQ и общей стороной QR заключены равные углы: (соответственные углы в равных треугольниках). Теперь уже видно, что равны и треугольники трем сторонам). Таким образом, углы MMUR и равны, и так как они смежные, то каждый из них прямой. Утверждение доказано.

К любой прямой можно провести перпендикулярную плоскость.

В самом деле, возьмем произвольную прямую и в любой ее точке проведем к ней два каких-либо перпендикуляра (лежащие в каких-либо двух плоскостях, проведенных через эту прямую). Через них, как через две пересекающиеся прямые, проходит плоскость. По предыдущему, данная прямая служит перпендикуляром к этой плоскости.

Из проведенных рассуждений также следует вывод: все прямые, перпендикулярные к данной прямой в одной из ее точек, лежат в одной плоскости, перпендикулярной к этой прямой.

В любой точке плоскости также можно восставить перпендикуляр к ней.

Для этого достаточно провести через данную в плоскости точку две прямые, лежащие в этой плоскости, а затем построить в той же точке две плоскости, перпендикулярные к проведенным прямым. Имея общую точку, эти две плоскости пересекутся по прямой, которая будет одновременно перпендикулярна к двум пересекающимся прямым в плоскости и, следовательно, перпендикулярна к самой плоскости.

Перпендикулярность прямой и плоскости.

1. Перпендикулярные прямые в пространстве.

Определение. Две прямые в пространстве называются перпендикулярными (взаимно перпендикулярными), если угол между прямыми равен 90°.
Обозначение перпендикулярности прямых а и b: a⊥b

Перпендикулярные прямые могут пересекаться, а могут быть скрещивающимися.

Лемма перпендикулярности двух параллельных прямых к третьей прямой.

Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Обратите внимание, что следующее утверждение планиметрии в стереометрии не действует:
Если две прямые перпендикулярны к третьей, то они параллельны.

На рисунке видно, что две прямые a и b перпендикулярны прямой с , но не параллельны .

2.Параллельные прямые, перпендикулярные к плоскости.

Определение. Прямая называется перпендикулярной к плоскости , если она перпендикулярна ко всем прямым, лежащим в этой плоскости.
Обозначение перпендикулярности прямой и плоскости: a⊥ γ.

На рисунке прямая а перпендикулярна плоскости γ. Из определения следует, что прямая a перпендикулярна каждой прямой, лежащей в этой плоскости.

Теорема.
Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.


Теорема. Если две прямые перпендикулярны к плоскости, то они параллельны.

3. Признак перпендикулярности прямой и плоскости

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Для того, чтобы прямая в пространстве была плоскости, необходимо и достаточно, чтобы на эпюре горизонтальная проекция прямой былагоризонтальной проекции горизонтали, а фронтальная проекция - к фронтальной проекции фронтали этой плоскости.

Определение расстояния от точки до плоскости (рис. 19)

1.Из точки опустить перпендикуляр на плоскость (для этого в плоскости

провести h,f);

2.Найти точку пересечения прямой с плоскостью (см. рис.18);

3.Найти н.в. отрезка перпендикуляра (см. рис 7).

Второй раздел Метод замены плоскостей проекций

(к задачам 5, 6,7)

Данную геометрическую фигуру оставляют в системе плоскостей проекций неподвижной. Новые плоскости проекции устанавливают так, чтобы получаемые на них проекции обеспечивали рациональное решение рассматриваемой задачи. При этом каждая новая система плоскостей проекций должна быть системой ортогональной. После проецирования объектов на плоскости, они совмещаются в одну посредством вращения их вокруг общих прямых (осей проекций) каждой пары взаимно перпендикулярных плоскостей.

Так например, пусть в системе двух плоскостей П 1 и П 2 задана точка А. Дополним систему еще одной плоскостью П 4 (рис. 20), П 1 П 4 . Она имеет общую линию Х 14 с плоскостью П 1 . Строим проекцию А 4 на П 4 .

АА 1 =А 2 А 12 =А 4 А 14.

На рис. 21, где плоскости П 1 , П 2 и П 4 приведены в совмещение, этот факт определен результатом А 1 А 4 Х 14 , а А 14 А 4 А 2 А 12.

Расстояние новой проекции точки до новой оси проекции (А 4 А 14) равно расстоянию от заменяемой проекции точки до заменяемой оси (А 2 А 12).

Большое количество метрических задач начертательной геометрии решаются на основе следующих четырех задач:

1. Преобразование прямой общего положения в прямую уровня (рис.22):

а) П 4 || АВ (ось Х 14 || А 1 В 1);

б) А 1 А 4 Х 14 ; В 1 В 4 Х 14 ;

в) А 4 А 14 =А 12 А 2 ;

В 4 В 14 =В 12 В 2 ;

А 4 В 4 - н.в.

2. Преобразование прямой общего положения в проецирующую (рис.23):

а) П 4 || АВ (Х 14 || А 1 В 1);

А 1 А 4 Х 14 ;

В 1 В 4 Х 14 ;

А 14 А 4 =А 12 А 2 ;

В 14 В 4 =В 12 В 2 ;

А 4 В 4 - н.в.;

б) П 5 АВ (Х 45 А 4 В 4);

А 4 А 5 Х 45 ;

В 4 В 5 Х 45 ;

А 45 А 5 =В 45 В 5 =А 14 А 1 =В 14 В 1 ;

3. Преобразование плоскости общего положения в проецирующее положение (рис.24):

Плоскость можно привести в проецирующее положение, если одну прямую плоскости сделать проецирующей. В плоскости АВС проведем горизонталь (h 2 ,h 1), которую за одно преобразование можно сделать проецирующей. Проведем плоскость П 4 перпендикулярно горизонтали; на эту плоскость она спроецируется точкой, а плоскость треугольника - прямой линией.

4. Преобразование плоскости общего положения в плоскость уровня (рис.25).

Плоскость сделать плоскостью уровня с помощью двух преобразований. Вначале плоскость надо сделать проецирующей (см. рис. 25), а затем провести П 5 || А 4 В 4 С 4 , получим А 5 В 5 С 5 - н.в.

Задача №5

Определить расстояние от точки С до прямой общего положения (рис.26).

Решение сводится ко 2-й основной задаче. Тогда расстояние по эпюре определяется как расстояние между двумя точками

А 5 В 5 D 5 и С 5.

Проекция С­ 4 D 4 || Х 45.

Задача №6

Определить расстояние от ()Dдо плоскости, заданной точками А,В,С, (рис. 27).

Задачу решают, используя 2-ю основную задачу. Расстояние (Е 4 D 4), от ()D 4 до прямой A 4 C 4 В 4 ,в которую спроецировалась плоскость АВС, является натуральной величиной отрезкаED.

Проекция D­ 1 E 1 || Х 14 ;

Е 2 Е Х12 =Е 4 Е Х14.

Построить самостоятельно D­ 1 E 1.

Построить самостоятельно D­ 2 E 2.

Задача №7

Определить натуральную величину треугольника АВС (см. решение 4-й основной задачи) (рис.25)






Связь между параллельностью прямых и их перпендикулярностью к плоскости Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости. Если две прямые перпендикулярны к плоскости, то они параллельны.


ПЕРПЕНДИКУЛЯР И НАКЛОННЫЕ Отрезок АН называется перпендикуляром, проведенным из точки А к плоскости. Точка Н – основание перпендикуляра. Отрезок АМ называется наклонной, проведенной из точки А к плоскости. Точка М – основание наклонной. Отрезок НМ называется проекцией наклонной АМ на плоскость.


Расстояние от точки до плоскости 1.Построим плоскость, проходящую через точку W перпендикулярно какой – нибудь прямой m 1, лежащей в плоскости. 2.Найдем прямую m 2 - линию пересечения плоскостей и. 3.На прямой m 2 выберем какие – нибудь точки U 1 и U 2. 4.Длина высоты WH треугольника WU 1 U 2 - искомое расстояние от точки W до плоскости.


Расстояние между скрещивающимися прямыми 1.На одной из двух заданных прямых p и q, например на прямой q, выберем некоторую точку Т. Построим плоскость через прямую р и точку Т. 2.В плоскости через точку Т проведем прямую р 1 p. 3.Построим плоскость через пересекающиеся прямые р 1 и q. 4.Выберем на прямой р точку W и найдем расстояние WH от точки W до плоскости. WH – искомое расстояние. SV – общий перпендикуляр скрещивающихся прямых p и q.


Теорема о трех перпендикулярах Прямая, проведенная в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной. Обратная теорема: Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции на эту плоскость




ПЕРПЕНДИКУЛЯРНОСТЬ ПЛОСКОСТЕЙ Фигуру, образованную двумя полуплоскостями, не принадлежащими одной плоскости, с общей ограничивающей их прямой называют двугранным углом. Полуплоскости, образующие двугранный угол, называются его гранями. Общая граница полуплоскостей называется ребром двугранного угла.


Угол, который получается в сечении двугранного угла плоскостью, перпендикулярной его ребру, называют линейным углом двугранного угла. На рисунке а) – угол АОВ- линейный угол двугранного угла АСDB. Все линейные углы двугранного угла равны друг другу (рис.б).










Перпендикулярность в пространстве. ЛИТЕРАТУРА. 1.Геометрия Учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев и др. – М. : Просвещение, Решение типовых задач по геометрии. Книга для учителя / В.Н. Литвиненко - М. : Просвещение, Изучение геометрии в классах. Методические рекомендации / С.М. Саакян, В.Ф. Бутузов – М. : Просвещение,