Оболочки глаза

Глазное яблоко имеет три оболочки - наружную фиброзную, среднюю сосудистую и внутреннюю, которая называется сетчаткой. Все три оболочки окружают ядро глаза. (см прил. 1)

Фиброзная оболочка состоит из двух частей - склеры и роговицы.

Склеру так же называют белком глаза или белочной оболочкой, она плотная белого цвета, состоит из соединительной ткани. Эта оболочка составляет большую часть глазного яблока. Склера служит каркасом глаза, выполняет защитную функцию. В задних отделах склера имеет истончение -решетчатую пластинку через которую из глазного яблока выходит зрительный нерв. В передних отделах зрительного яблока склера переходит в роговицу. Место этого перехода называется лимбом. У новорожденных склера тоньше, чем у взрослых, поэтому у детенышей животных глаза имеют голубоватый оттенок.

Роговица - прозрачная ткань, расположенная в передней части глаза. Роговица слегка возвышается над уровнем сферы глазного яблока, так как радиус её кривизны меньше, чем радиус склеры. В норме роговица имеет форму склеры. В роговице очень много чувствительных нервных окончаний, поэтому при острых заболеваниях роговицы возникает сильное слезотечение, светобоязнь. Роговица не имеет кровеносных сосудов, а обмен веществ в ней происходит благодаря влаге передней камеры и слёзной жидкости. Нарушение прозрачности роговицы приводит к снижению остроты зрения.

Сосудистая оболочка - вторая оболочка глаза, её ещё называют сосудистым трактом. Эта оболочка состоит из сети кровеносных сосудов. Условно, для лучшего понимания внутренних процессов, её разделяют на три части.

Первая часть - собственно сосудистая оболочка. Она имеет наибольшую площадь и выстилает изнутри две задние трети склеры. Она служит для обмена веществ третьей оболочки - сетчатки.

Далее, спереди расположена вторая, более толстая часть сосудистой оболочки - ресничное (цилиарное) тело. Ресничное тело имеет вид кольца, расположено вокруг лимба. Цилиарное тело состоит из мышечных волокон и множества ресничных отростков. От ресничных отростков начинаются волокна цинновой связки. Вторым концом цинновы связки вплетаются в капсулу хрусталика. В ресничных отростках происходит образование внутриглазной жидкости. Внутриглазная жидкость учувствует в обмене веществ тех структур глаза, которые не имеют собственных сосудов.

Мышцы ресничного тела идут в различных направлениях и прикрепляются к склере. При сокращении этих мышц ресничное тело несколько подтягивается вперёд, что ослабляет натяжение цинновых связок. Это ослабляет натяжение капсулы хрусталика и позволяет хрусталику становиться более выпуклым. Изменение кривизны хрусталика необходимо для четкого различения деталей предметов на различном расстоянии от глаза, то есть для процесса аккомодации.

Третья часть сосудистой оболочки - радужная оболочка или радужка. От количества пигментов в радужке зависит цвет глаз. У голубоглазых - мало пигмента, у кареглазых - много. Следовательно, чем больше пигмента, тем темнее глаз. Животные с пониженным содержанием пигмента, как в глазах, так и в шерстяном покрове называются альбиносами. Радужка - круглая мембрана с отверстием в центре, состоящая из сети кровеносных сосудов и мышц. Мышцы радужки расположены радиально и концентрически. При сокращении концентрических мышц зрачок сужается. Если сокращаются радиальные мышцы, то зрачок расширяется. Размер зрачка зависит от количества падающего на глаз света, возраста и других причин.

Третья, внутренняя оболочка глазного яблока это сетчатка. Она, в виде толстой плёнки выстилает всю заднюю часть глазного яблока. Питание сетчатки происходит по сосудам, которые входят в области зрительного нерва, а затем разветвляются и покрывают всю поверхность сетчатой оболочки. Именно на эту оболочку падает свет, отраженный предметами нашего мира. В сетчатке лучи преобразуются в нервный сигнал. Сетчатка состоит из 3 видов нейронов, каждый из которых образует самостоятельный слой. Первый представлен рецепторным нейроэпителием (палочками и колбочками и их ядрами), второй - биполярными нейронами, третий - ганглиозными клетками. Между первым и вторым, вторым и третьим слоями нейронов имеются синапсы.

В соответствии с расположением, строением и функцией в сетчатке различают две части: зрительную, выстилающую изнутри заднюю, большую часть стенки глазного яблока, и переднюю пигментную, покрывающую изнутри ресничное тело и радужную оболочку.

Зрительная часть содержит фоторецепторные, первично чувствующие нервные клетки. Фоторецепторы бывают двух типов - палочки и колбочки. Там, где на сетчатке формируется зрительный нерв, нет чувствительных клеток. Этот участок называют слепым пятном. Каждая фоторецепторная клетка состоит из наружного и внутреннего сегментов; у палочки наружный сегмент тонкий, длинный, цилиндрический, у колбочки - короткий, конический.

В светочувствительном листке сетчатки находятся несколько типов нервных и один тип глиальных клеток. Ядросодержащие участки всех клеток образуют три слоя, а зоны синоптических контактов клеток - два сетчатых слоя. Таким образом, в зрительной части сетчатки различают следующие слои, считая от поверхности, соприкасающейся с сосудистой оболочкой: слой пигментных эпителиальных клеток, слой палочек и колбочек, наружная пограничная мембрана, наружный ядерный слой, наружный сетчатый слой, внутренний ядерный слой, внутренний сетчатый слой, ганглиозный слой, слой нервных волокон и внутренняя пограничная мембрана. (Квинихидзе Г.С. 1985). (см. прил. 2)

Пигментный эпителий, анатомически тесно связан с сосудистой оболочкой. В пигментном слое сетчатки содержится черный пигмент -меланин, принимающий активное участие в обеспечении ясного видения. Пигмент, поглощая свет, препятствует его отражению от стенок и попаданию на другие рецепторные клетки. Кроме того, пигментный слой содержит большое количество витамина А, участвующего в синтезе зрительных пигментов в наружных сегментах палочек и колбочек, куда он может легко передаваться. Пигментный эпителий участвует в акте зрения, так как в нем образуются и содержатся зрительные вещества.

Слой палочек и колбочек состоит из наружных сегментов фоторецепторных клеток, окруженных отростками пигментных клеток. Палочки и колбочки находятся в матриксе, содержащем гликозаминогликаны и гликопротеиды. Имеется два вида фоторецепторных клеток, различающихся по форме наружного сегмента, но и по количеству, распределению в сетчатке, ультраструктурной организации, а также по форме синаптической связи с отростками глубже расположенных элементов сетчатки - биполярными и горизонтальными нейронами.

В сетчатке дневных животных и птиц (дневные грызуны, куры, голуби) содержатся почти исключительно колбочки, в сетчатке ночных птиц (сова и др.) зрительные клетки представлены преимущественно палочками.

Во внутреннем сегменте сосредоточены основные клеточные органеллы: скопление митохондрий, полисомы, элементы эндоплазматической сети, комплекса Гольджи.

Палочки рассредоточены, в основном, по периферии сетчатки. Для них характерна повышенная светочувствительность при недостаточной освещенности, они обеспечивают ночное и периферическое зрение.

Колбочки расположены в центральной части сетчатки. Они могут различить мельчайшие детали и цвет, но для этого им необходимо большое количество света. Поэтому в темноте цветка кажутся одинаковыми. Колбочки заполняют особую зону сетчатки - желтое пятно. В центре желтого пятна находится центральная ямка, которая отвечает за наибольшую остроту зрения.

Однако по форме наружного сегмента не всегда можно отличить колбочки от палочек. Так, колбочки центральной ямки - места наилучшего восприятия зрительных раздражений - имеют вытянутый в длину тонкий наружный сегмент, и напоминает палочку.

Внутренние сегменты палочек и колбочек также отличаются по форме и величине; у колбочки он значительно толще. Во внутреннем сегменте сосредоточены основные клеточные органеллы: скопление митохондрий, полисомы, элементы эндоплазматической сети, комплекса Гольджи. У колбочек во внутреннем сегменте имеется участок, состоящий из скопления плотно прилегающих друг к другу митохондрий с расположенной в центре этого скопления липидной каплей - эллипсоидом. Оба сегмента соединены так называемой ножкой.

Среди фоторецепторов имеется своего рода «специализация». Одни фоторецепторы сигнализируют только о наличии черной вертикальной линии на светлом фоне, другие - о черной горизонтальной, третьи - о наличии линии, наклоненной под определённым углом. Есть группы клеток, сообщающие о контурах, но только о тех, которые ориентированы определённым образом. Так же существуют виды клеток, отвечающие за восприятие движения в конкретном направлении, клетки воспринимающие цвет, форму и т.д. Сетчатка устроена чрезвычайно сложно, поэтому огромное количество информации обрабатывается за миллисекунды.

Строение глаза человека включает в себя множество сложных систем которые составляют зрительную систему с помощью которой обеспечивается получение информации о том, что окружает человека. Входящие в ее состав органы чувств, характеризуемые как парные, отличается сложностью строения и уникальностью. Каждый из нас обладает индивидуальными глазами. Их характеристики исключительные. В то же время схема строения глаза человека и функционал, имеет общие черты.

Эволюционное развитие привело к тому, что органы зрения стали максимально сложными образованиями на уровне структур тканевого происхождения. Основное предназначение глаза заключается в обеспечении зрения. Эту возможность гарантируют кровеносные сосуды, соединительные ткани, нервы и пигментные клетки. Ниже приведем описание анатомии и основных функций глаза с обозначениями.


Под схемой строения глаз человека следует понимать весь глазной аппарат имеющий оптическую систему, отвечающую за обработку информации в виде зрительных образов. Здесь подразумевается ее восприятие, последующая обработка и передача. Все это реализуется за счет элементов, формирующих глазное яблоко.

Глаза имеют округлую форму. Местом его расположения служит специальная выемка в черепе. Она именуется как глазная. Наружная часть закрывается веками и складками кожи, служащими для размещения мышц и ресниц.


Их функциональность заключается в следующем:
  • увлажнение, что обеспечивают находящиеся в ресницах железы. Секреторные клетки этого вида способствуют образованию соответствующей жидкости и слизи;
  • защита от повреждений механического характера. Это достигается посредством смыкания век;
  • удаление мельчайших частиц, попадающих на склеру.

Функционирование системы зрения настроено таким образом, чтобы с максимальной точностью осуществлять передачу получаемых световых волн. В этом случае требуется бережное отношение. Рассматриваемые органы чувств отличаются хрупкостью.

Веки

Кожные складки – это то, что представляют собой веки, которые постоянно находятся в движении. Происходит мигание. Такая возможность доступна благодаря наличию связок, расположенных по краям век. Также эти образования выступают в роли соединительных элементов. С их помощью веки крепятся к глазнице. Кожа образует верхний слой век. Затем следует слой мышц. Далее идет хрящевая ткань и конъюнктива.

Веки в части наружного края имеют два ребра, где одно – переднее, а другое – заднее. Они образуют интермаргинальное пространство. Сюда выводятся протоки, идущие от мейбомиевых желез. С их помощью вырабатывается секрет, дающий возможность скользить векам с предельной легкостью. При этом достигается плотность смыкания век, и создаются условия для правильного отвода слезной жидкости.

На переднем ребре находятся луковицы, обеспечивающие рост ресничек. Сюда же выходят протоки, служащие транспортными путями для маслянистого секрета. Здесь же располагаются выводы потовых желез. Углы век соотносятся с выводами слезных протоков. Заднее ребро служит гарантией того, что каждое веко будет плотно прилегать к глазному яблоку.

Для век характерны сложные системы, обеспечивающие эти органы кровью и поддерживающие правильность проводимости нервных импульсов. За кровоснабжение отвечает сонная артерия. Регуляция на уровне нервной системы – задействование двигательных волокон, формирующих лицевой нерв, а также обеспечивающих соответствующую чувствительность.

К главным функциям века относят защиту от повреждений в результате механического воздействия и инородных тел. К этому следует добавить функцию увлажнения, способствующую насыщению влагой внутренних тканей органов зрения.

Глазница и ее содержимое

Под костной впадиной понимается глазница, которая еще именуется как костная орбита. Она служит надежной защитой. Структура этого образования включает в себя четыре части – верхнюю, нижнюю, наружную и внутреннюю. Они образуют единое целое за счет устойчивого соединения между собой. При этом их прочность различная.

Особой надежностью отличается наружная стенка. Внутренняя значительно слабее. Тупые травмы способны спровоцировать ее разрушение.


К особенностям стенок костной впадины относят их соседство с воздушными пазухами:
  • внутри – решетчатый лабиринт;
  • низ – гайморова пазуха;
  • верх – лобная пустота.


Подобное структурирование создает определенную опасность. Опухолевые процессы, развивающиеся в пазухах, способны распространиться и на полость глазницы. Допустимо и обратное действие. Глазница сообщается с полостью черепа посредством большого числа отверстий, что предполагает возможность перехода воспаления на участки головного мозга.

Зрачок

Зрачок глаза представляет собой отверстие круглой формы, расположенное в центре радужки. Его диаметр способен изменяться, что позволяет регулировать степень проникновения светового потока во внутреннюю область глаза. Мышцы зрачка в виде сфинктера и дилататора обеспечивают условия, когда изменяется освещенность сетчатки. Задействование сфинктера сужает зрачок, а дилататора – расширяет.

Такое функционирование упомянутых мышц сродни тому, как действует диафрагма фотоаппарата. Слепящий свет приводит к уменьшению ее диаметра, что отсекает слишком интенсивные световые лучи. Создаются условия, когда достигается качество изображения. Недостаток освещенности приводит к другому результату. Диафрагма расширяется. Качество снимка опять же остается высоким. Здесь можно говорить о диафрагмирующей функции. С ее помощью обеспечивается зрачковый рефлекс.


Величина зрачков регулируется в автоматическом режиме, если такое выражение допустимо. Сознание человека явным образом этот процесс не контролирует. Проявление зрачкового рефлекса связано с изменением освещенности сетчатой оболочки. Поглощение фотонов запускает процесс передачи соответствующей информации, где под адресатами понимаются нервные центры. Требуемая реакция сфинктера достигается после обработки сигнала нервной системой. В действие вступает ее парасимпатический отдел. Что касается дилататора, то здесь в дело вступает симпатический отдел.

Рефлексы зрачка

Реакция в виде рефлекса обеспечивается за счет чувствительности и возбуждения двигательной активности. Сначала формируется сигнал как ответ на определенное воздействие, в дело вступает нервная система. Затем следует конкретная реакция на раздражитель. В работу включаются мышечные ткани.

Освещение заставляет зрачок сужаться. Это отсекает слепящий свет, что положительно сказывается на качестве зрения.


Такая реакция может характеризоваться следующим образом:
  • прямая – освещается один глаз. Он реагирует требуемым образом;
  • содружественная – второй орган зрения не освещается, но отзывается на световое воздействие, оказываемое на первый глаз. Эффект этого вида достигается посредством того, что волокна нервной системы частично перекрещиваются. Образуется хиазма.

Раздражитель в виде света не является единственной причиной изменения диаметра зрачков. Еще возможны такие моменты, как конвергенция – стимуляция активности прямых мышц зрительного органа, и – задействование цилиарной мышцы.

Возникновение рассматриваемых зрачковых рефлексов происходит тогда, когда изменяется точка стабилизации зрения: взгляд переводится с объекта, расположенного на большом удалении, на объект, находящийся на более близком расстоянии. Задействуются проприорецепторы упомянутых мышц, что обеспечивают волокна, идущие к глазному яблоку.

Эмоциональный стресс, например, в результате боли или испуга, стимулирует расширение зрачка. Если раздражается тройничный нерв, а это говорит о низкой возбудимости, то наблюдается эффект сужения. Также подобные реакции возникают при приеме определенных лекарственных препаратов, возбуждающих рецепторы соответствующих мышц.

Зрительный нерв

Функциональность зрительного нерва заключается в доставке соответствующих сообщений в определенные области головного мозга, предназначенные для обработки световой информации.

Импульсы света сначала попадают на сетчатку. Местонахождение зрительного центра определяется затылочной долей головного мозга. Структура зрительного нерва предполагает наличие нескольких составляющих.

На этапе внутриутробного развития структуры головного мозга, внутренней оболочки глаза и зрительного нерва идентичны. Это дает основание утверждать, что последний – часть мозга, находящаяся вне пределов черепной коробки. При этом обычные черепно-мозговые нервы имеют отличную от него структуру.

Длина зрительного нерва небольшая. Составляет 4–6 см. Преимущественно местом его расположения служит пространство за глазным яблоком, где он погружен в жировую клетку орбиты, что гарантирует защиту от повреждений извне. Глазное яблоко в части заднего полюса – участок, где начинается нерв этого вида. В этом месте наблюдается скопление нервных отростков. Они формируют своеобразный диск (ДЗН). Такое название объясняется приплюснутостью формы. Двигаясь дальше, нерв выходит в глазницу с последующим погружением в мозговые оболочки. Затем он достигает передней черепной ямки.


Зрительные пути образуют хиазму внутри черепа. Они пересекаются. Эта особенность важна при диагностировании глазных и неврологических заболеваний.

Непосредственно под хиазмом находится гипофиз. От его состояния зависит, насколько эффективно способна работать эндокринная система. Такая анатомия отчетливо просматривается, если опухолевые процессы затрагивают гипофиз. Правлением патологии этого вида становится оптико-хиазмальный синдром.

Внутренние ветви сонной артерии отвечают за то, чтобы обеспечивать зрительный нерв кровью. Недостаточная длина цилиарных артерий исключает возможность хорошего кровоснабжения ДЗН. В то же время другие части получают кровь в полном объеме.

Обработка световой информации напрямую зависит от зрительного нерва. Главная его функция – доставить сообщения относительно полученной картинки до конкретных адресатов в виде соответствующих зон головного мозга. Любые травмы этого образования вне зависимости от тяжести способны привести к негативным последствиям.

Камеры глазного яблока

Пространства замкнутого типа в глазном яблоке – это так называемые камеры. В них содержится внутриглазная влага. Между ними существует связь. Таких образований два. Одно занимает переднее положение, а другое – заднее. В качестве связующего звена выступает зрачок.

Переднее пространство расположено сразу за областью роговицы. Его тыльная сторона ограничена радужной оболочкой. Что касается пространства за радужкой, то это задняя камера. Стекловидное тело служит ей опорой. Неизменяемый объем камер – это норма. Производство влаги и ее отток – процессы, способствующие корректировке соответствия стандартным объемам. Выработка глазной жидкости возможна за счет функциональности ресничных отростков. Ее отток обеспечивается благодаря системе дренажей. Она находится во фронтальной части, где роговица контактирует со склерой.

Функциональность камер заключается в поддержании «сотрудничества» между внутриглазными тканями. Также они отвечают за поступление световых потоков на сетчатую оболочку. Лучи света на входе преломляются соответствующим образом в результате совместной деятельности с роговицей. Это достигается посредством свойств оптики, присущих не только влаге внутри глаза, но и роговой оболочке. Создается эффект линзы.

Роговица в части ее эндотелиального слоя выступает в роли внешнего ограничителя для передней камеры. Рубеж обратной стороны формируется радужкой и хрусталиком. Максимальная глубина приходится на ту область, где располагается зрачок. Ее величина доходит до 3,5 мм. При движении к периферии этот параметр медленно уменьшается. Иногда такая глубина оказывается большей, например, при отсутствии хрусталика ввиду его удаления, или меньшей, если отслаивается сосудистая оболочка.


Заднее пространство ограничивается спереди листком радужки, а его тыльная часть упирается в стекловидное тело. В роли внутреннего ограничителя выступает экватор хрусталика. Внешний барьер образует цилиарное тело. Внутри находится большое число цинновых связок, представляющих собой тонкие нити. Они создают образование, выступающее в роли связующего звена между ресничным телом и биологической линзой в виде хрусталика. Форма последнего способна изменяться под воздействием цилиарной мышцы и соответствующих связок. Это обеспечивает требуемую видимость объектов вне зависимости от расстояния до них.

Состав влаги, находящейся внутри глаза, соотносится с характеристиками плазмы крови. Внутриглазная жидкость делает возможным доставку питательных веществ, востребованных с целью обеспечения нормальной работы органов зрения. Также с ее помощью реализуется возможность удаления продуктов обмена.

Вместительность камер определяется объемами в диапазоне от 1,2 до 1,32 см3. При этом важно то, как производится выработка и отток глазной жидкости. Эти процессы требуют равновесия. Любые нарушения работы такой системы приводят к негативным последствиям. Например, существует вероятность развития , что грозит серьезными проблемами с качеством зрения.

Цилиарные отростки служат источниками глазной влаги, что достигается за счет фильтрации крови. Непосредственное место, где образуется жидкость, – задняя камера. После этого она перемещается в переднюю с последующим оттоком. Возможность этого процесса обусловливается разницей давления, создающегося в венах. На последнем этапе происходит всасывание влаги этими сосудами.

Шлеммов канал

Щель внутри склеры, характеризуемая как циркулярная. Названа по фамилии немецкого врача Фридриха Шлемма. Передняя камера в части своего угла, где образуется стык радужки и роговицы, – это более точная область расположения шлеммова канала. Его предназначение заключается в отводе водянистой влаги с обеспечением последующего ее всасывания передней цилиарной веной.


Строение канала в большей мере соотносится с тем, как выглядит лимфатический сосуд. Внутренняя его часть, вступающая в соприкосновение с вырабатываемой влагой, представляет собой сетчатое образование.

Возможности канала в плане транспортировки жидкости составляют от 2 до 3 микро литров в минуту. Травмы и инфекции блокируют работу канала, что провоцирует появления заболевания в виде глаукомы.

Кровоснабжение глаза

Создание потока крови, поступающего к органам зрения, – это функциональность глазной артерии которая является неотъемлемой частью строения глаза. Образуется соответствующая ветвь от сонной артерии. Она достигает глазного отверстия и проникает внутрь глазницы, что делает вместе со зрительным нервом. Затем ее направление меняется. Нерв огибается с внешней стороны таким образом, что ветвь оказывается сверху. Формируется дуга с исходящими от нее мышечными, ресничными и другими ветвями. С помощью центральной артерии обеспечивается кровоснабжение сетчатой оболочки. Сосуды, участвующие в этом процессе, образуют свою систему. В ее состав входят также и ресничные артерии.

После того, как система оказывается в глазном яблоке, происходит ее разделение на ветви, что гарантирует полноценное питание сетчатки. Такие образования определяются как концевые: они не имеют соединений с рядом находящимися сосудами.

Цилиарные артерии характеризируют по признаку расположения. Задние достигают тыльной области глазного яблока, минуют склеру и расходятся. К особенностям передних относят то, что они различаются по длине.

Цилиарные артерии, определяемые как короткие, проходят склеру и формируют отдельное сосудистое образование, состоящее из множества ветвей. На входе в склеру образуется сосудистый венчик из артерий этого вида. Он возникает там, где зрительный нерв берет свое начало.

Цилиарные артерии меньшей длины также оказываются в глазном яблоке и устремляются к ресничному телу. Во фронтальной области каждый такой сосуд распадается на два ствола. Создается образование, обладающее концентрической структурой. После чего они встречаются с подобными ответвлениями другой артерии. Формируется круг, определяемый как большой артериальный. Также возникает аналогичное образование меньших размеров на месте, где находится пояс радужки ресничный и зрачковый.


Цилиарные артерии, характеризуемые как передние, – это часть мышечных кровеносных сосудов подобного типа. Они не заканчиваются в области, образуемой прямыми мышцами, а тянутся дальше. Происходит погружение в эписклеральную ткань. Сначала артерии проходят по периферии глазного яблока, а затем углубляются в него посредством семи ответвлений. В итоге происходит их соединение друг с другом. По периметру радужки формируется круг кровообращения, обозначаемый как большой.

На подходе к глазному яблоку образуется петлистая сеть, состоящая из цилиарных артерий. Она опутывает роговицу. Также происходит деление не ветви, обеспечивающие кровоснабжение конъюнктивы.

Частично оттоку крови способствуют вены, идущие вместе с артериями. Преимущественно это возможно за счет венозный путей, собирающихся в отдельные системы.

Своеобразными коллекторами служат водоворотные вены. Их функциональность – сбор крови. Прохождение этими венами склеры происходит под косым углом. С их помощью обеспечивается отвод крови. Она поступает в глазницу. Основной сборщик крови – глазная вена, занимающая верхнее положение. Посредством соответствующей щели она выводится в пещеристый синус.

Глазная вена внизу принимает кровь от проходящих в этом месте водоворотных вен. Происходит ее раздвоение. Одна ветвь соединяется с глазной веной, находящейся вверху, а другая – достигает глубокой вены лица и щелевидного пространства с крыловидным отростком.

В основном кровоток от ресничных вен (передних) наполняет подобные сосуды глазницы. В результате основной объем крови поступает в венозные пазухи. Создается обратное движение потока. Оставшаяся кровь движется вперед и наполняет вены лица.

Орбитальные вены соединяются с венами полости носа, лицевыми сосудами и решетчатой пазухой. Самый крупный анастомоз образуют вены глазницы и лица. Его граница затрагивает внутренний угол век и соединяет непосредственно глазную вену и лицевую.

Мышцы глаза

Возможность хорошего и объемного зрения достигается тогда, когда глазные яблоки способны двигаться определенным образом. Здесь особую важность приобретает согласованность работы зрительных органов. Гарантами такого функционирования выступают шесть мышц глаза, где четыре из них прямые, а две – косые. Последние так называются ввиду особенности хода.

За активность этих мышц несут ответственность черепные нервы. Волокна рассматриваемой группы мышечной ткани максимально насыщены нервными окончаниями, что обусловливает их работу с позиции высокой точности.

Посредством мышц, отвечающих за физическую активность глазных яблок, доступны разноплановые движения. Потребность в реализации этой функциональности определяется тем, что требуется слаженная работа мышечных волокон этого типа. Одни и те же картинки предметов должны фиксироваться на одинаковых областях сетчатки. Это позволяет ощущать глубину пространства и отлично видеть.



Строение мышц глаза

Мышцы глаза начинаются возле кольца, которое служит окружением зрительного канала вблизи к наружному отверстию. Исключение касается лишь косой мышечной ткани, занимающей нижнее положение.

Мышцы расположены так, что формируют воронку. Через нее проходят нервные волокна и кровеносные сосуды. По мере удаления от начала этого образования происходит отклонение косой мышцы, находящейся вверху. Наблюдается смещение в сторону своеобразного блока. Здесь она преобразуется в сухожилие. Прохождение сквозь петлю блока задает направление под углом. Мышца крепится в верхнем радужном отделе глазного яблока. Там же начинается косая мышца (нижняя), от края глазницы.

По мере приближения мышц к глазному яблоку, образуется плотная капсула (теноновая оболочка). Устанавливается соединение со склерой, что происходит с разной степенью удаленности от лимба. На минимальном удалении располагается внутренняя прямая мышца, на максимальном - верхняя. Фиксация косых мышц производится в ближе к центру глазного яблока.

Функциональность глазодвигательного нерва заключается в поддержании правильной работы мышц глаза. Ответственность отводящего нерва определяется поддержанием активности прямой мышцы (наружной), а блокового – верхней косой. Для регуляции этого вида характерна своя особенность. Контроль незначительного числа мышечных волокон осуществляется за счет одной ветви двигательного нерва, что значительно повышает четкость движений глаз.

Нюансы крепления мышц задают вариативность того, как именно способны двигаться глазные яблоки. Прямые мышцы (внутренние, наружные) крепятся таким образом, что они обеспечиваются горизонтальные повороты. Активность внутренней прямой мышцы позволяет поворачивать глазное яблоко по направлению к носу, а наружной – к виску.

За вертикальные движения отвечают прямые мышцы. Существует нюанс их расположения, обусловленный тем, что присутствует определенный наклон линии фиксации, если ориентироваться на линию лимба. Это обстоятельство создает условия, когда вместе с вертикальным движением глазное яблоко поворачивается внутрь.

Функционирование косых мышц отличается большей сложностью. Объясняется это особенностями расположения этой мышечной ткани. Опускание глаза и поворот наружу обеспечивает косая мышца, расположенная вверху, а подъем, включая поворот наружу, – также косая мышца, но уже нижняя.

Еще к возможностям упомянутых мышц относят обеспечение незначительных поворотов глазного яблока в соответствии с движением часовой стрелки вне зависимости от направления. Регуляция на уровне поддержания нужной активности нервных волокон и слаженность работы глазных мышц – два момента, способствующие реализации сложных поворотов глазных яблок любой направленности. В результате зрение приобретает такое свойство, как объем, а его четкость существенно повышается.

Оболочки глаза

Форма глаза удерживается благодаря соответствующим оболочкам. Хотя на этом функциональность этих образований не исчерпывается. С их помощью осуществляется доставка питательных веществ, и поддерживается процесс (четкое видение предметов при изменении величины расстояния до них).


Органы зрения отличаются многослойной структурой, проявляемой в виде следующих оболочек:
  • фиброзная;
  • сосудистая;
  • сетчатка.

Фиброзная оболочка глаза

Соединительная ткань, позволяющая удерживать конкретную форму глаза. Также выступает в роли защитного барьера. Структура фиброзной оболочки предполагает наличие двух составляющих, где одна – это роговица, а вторая – склера.

Роговица

Оболочка, отличающаяся прозрачностью и эластичностью. По форме соотносится с выпукло-вогнутой линзой. Функциональность практически идентична тому, что делает линза фотоаппарата: фокусирует лучи света. Вогнутая сторона роговицы смотрит назад.


Состав этой оболочки формируется посредством пяти слоев:
  • эпителий;
  • боуменова мембрана;
  • строма;
  • десцеметова оболочка;
  • эндотелий.

Склера

В строении глаза важную роль играет внешняя защита глазного яблока. Формирует фиброзную оболочку, включающую также и роговицу. В отличие от последней склера представляет собой непрозрачную ткань. Связано это с хаотичным расположением коллагеновых волокон.

Основная функция – качественное зрение, что гарантируется ввиду препятствования проникновению световых лучей сквозь склеру.

Исключается вероятность ослепления. Также это образование служит опорой для составляющих глаза, вынесенных за пределы глазного яблока. Сюда относят нервы, сосуды, связки и глазодвигательные мышцы. Плотность структуры обеспечивает поддержание в заданных значениях внутриглазного давления. Шлемов канал выступает в роли транспортного канала, обеспечивающего отток глазной влаги.


Сосудистая оболочка

Формируется на основе трех частей:
  • радужка;
  • цилиарное тело;
  • хориоидея.

Радужка

Часть сосудистой оболочки, отличающаяся от других отделов этого образования тем, что ее расположение фронтальное против пристеночного, если ориентироваться на плоскость лимба. Представляет собой диск. В центре находится отверстие, известное как зрачок.


Структурно состоит из трех слоев:
  • пограничный, расположенный спереди;
  • стромальный;
  • пигментно-мышечный.

В формировании первого слоя участвуют фибробласты, соединяющиеся между собой посредством своих отростков. За ними располагаются пигментсодержащие меланоциты. От количества этих специфичных клеток кожи зависит цвет радужки. Этот признак передается по наследству. Коричневая радужка в плане наследования является доминантной, а голубая – рецессивной.

У основной массы новорожденных радужка имеет светло-голубой оттенок, что обусловливается слабо развитой пигментацией. Ближе к полугодовалому возрасту цвет становится более темным. Это связано с ростом числа меланоцитов. Отсутствие меланосом у альбиносов приводит к доминированию розового цвета. В некоторых случаях возможна , когда глаза в части радужки получают разную окраску. Меланоциты способны провоцировать развитие меланом.

Дальнейшее погружение в строму открывает сеть, состоящую из большого числа капилляров и волокон коллагена. Распространение последних захватывает мышцы радужки. Происходит соединение с ресничным телом.

Задний слой радужки состоит из двух мышц. Сфинктер зрачка, по форме напоминающий кольцо, и дилататор, имеющий радиальную ориентацию. Функционирование первого обеспечивает глазодвигательный нерв, а второго – симпатический. Также здесь присутствует пигментный эпителий как часть недифференцированной области сетчатки.

Толщина радужки отличается вариативностью в зависимости от определенного участка этого образования. Диапазон таких изменений составляет 0,2–0,4 мм. Минимум толщины наблюдается в корневой зоне.

Центр радужки занимает зрачок. Его ширина изменчива под воздействием света, что обеспечивают соответствующие мышцы. Большая освещенность провоцирует сжатие, а меньшая – расширение.

Радужка в части своей передней поверхности делится на зрачковый и ресничный пояса. Ширина первого составляет 1 мм и второго – от 3 до 4 мм. Разграничение в этом случае обеспечивает своеобразный валик, обладающий зубчатой формой. Мышцы зрачка распределены следующим образом: сфинктер – зрачковый пояс, а дилататор – ресничный.

Ресничные артерии, формирующие большой артериальный круг, доставляют кровь к радужке. Еще в этом процессе участвует и малый артериальный круг. Иннервация этой определенных зон сосудистой оболочки достигается за счет ресничных нервов.

Ресничное тело

Область сосудистой оболочки, отвечающая за выработку глазной жидкости. Используется также такое название, как цилиарное тело.
Структура рассматриваемого образования – мышечные ткани и кровеносные сосуды. Мышечное содержание этой оболочки предполагает наличие нескольких слоев, имеющих разную направленность. Их активность включает в работу хрусталик. Его форма меняется. В результате человек получает возможность четкого видения объектов на разных расстояниях. Еще одна функциональность ресничного тела заключается в удержании тепла.

Кровеносные капилляры, находящиеся в ресничных отростках, способствуют производству внутриглазной влаги. Происходит фильтрация кровотока. Влага этого вида обеспечивает нужное функционирование глаза. Удерживается постоянная величина внутриглазного давления.

Также цилиарное тело служит опорой для радужки.

Хориоидея (Choroidea)

Область сосудистого тракта, расположенная сзади. Пределы этой оболочки ограничиваются зрительным нервом и зубчатой линией.
Параметр толщина заднего полюса составляет от 0,22 до 0,3 мм. При приближении к зубчатой линии происходит его уменьшение до 0,1–0,15 мм. Хориоидея в части сосудов состоит из цилиарных артерий, где задние короткие идут по направлению к экватору, а передние – к сосудистой оболочке, когда достигается соединение вторых с первыми в ее передней области.

Цилиарные артерии минуют склеру и достигают супрахориоидального пространства, ограниченного хориоидеей и склерой. Происходит распад на значительное число ветвей. Они становятся основой сосудистой оболочки. По периметру диска зрительного нерва образуется сосудистый круг Цинна – Галера. Иногда в области макулы может наличествовать дополнительная ветвь. Она видима или на сетчатке, или на ДЗН. Важный момент при эмболии центральной артерии сетчатки.



Сосудистая оболочка включает в себя четыре составляющих:
  • надсосудистая с темным пигментом;
  • сосудистая коричневатого оттенка;
  • сосудисто-капиллярная, поддерживающая работу сетчатки;
  • базальный слой.

Сетчатка глаза (ретина)

Сетчаткой является периферический отдел, запускающий в работу зрительный анализатор который играет важную роль в строении глаза человека. С его помощью улавливаются световые волны, производится их преобразование в импульсы на уровне возбуждения нервной системы и осуществляется дальнейшая передача информации посредством зрительного нерва.

Ретина – это нервная ткань, формирующая глазное яблоко в части его внутренней оболочки. Она ограничивает пространство, заполненное стекловидным телом. В качестве внешнего обрамления выступает сосудистая оболочка. Толщина сетчатки незначительная. Параметр, соответствующий норме, составляет лишь 281 мкм.

Поверхность глазного яблока изнутри в большей своей части покрыта ретиной. Началом сетчатой оболочки условно можно считать ДЗН. Далее она тянется до такой границы, как зубчатая линия. Затем преобразуется в пигментный эпителий, обволакивает внутреннюю оболочку ресничного тела и распространяется на радужку. ДЗН и зубчатая линия – это области, где крепление сетчатки наиболее надежное. В других местах ее соединение отличается небольшой плотностью. Именно этот факт объясняет то, что ткань легко отслаивается. Это провоцирует множество серьезных проблем.

Структура сетчатой оболочки формируется нескольким слоями, отличающимися разной функциональностью и строением. Они тесно соединены друг с другом. Образуется плотный контакт, обусловливающий создание того, что принято называть зрительным анализатором. Посредством его человеку предоставляется возможность правильного восприятия окружающего мира, когда производится адекватная оценка цвета, форм и размеров предметов, а также расстояния до них.


Лучи света при попадании в глаз проходят несколько преломляющих сред. Под ними следует понимать роговицу, глазную жидкость, прозрачное тело хрусталика и стекловидное тело. Если рефракция в пределах нормы, то в результате такого прохождения световых лучей на сетчатке формируется картинка объектов, попавших в поле зрения. Полученное изображение отличается тем, что оно перевернутое. Далее определенные части головного мозга получают соответствующие импульсы, и человек приобретает способность видеть то, что его окружает.

С точки зрения структуры ретина – максимально сложное образование. Все ее составляющие тесно взаимодействуют друг с другом. Она отличается многослойностью. Повреждение любого слоя способно привести к негативному исходу. Зрительное восприятие как функциональность сетчатки обеспечивается трех-нейронной сетью, проводящей возбуждения от рецепторов. Ее состав формируется за счет широкого набора нейронов.

Слои сетчатки

Ретина образует «сэндвич» из десяти рядов:


1. Пигментный эпителий , прилегающий к мембране Бруха. Отличается широкой функциональностью. Защита, клеточное питание, транспортировка. Принимает в себя отторгающие сегменты фоторецепторов. Служит барьером на пути светового излучения.


2. Фотосенсорный слой . Клетки, обладающие чувствительностью к свету, в виде своеобразных палочек и колбочек. В палочкоподобных цилиндрах содержится зрительный сегмент родопсин, а в колбочках – иодопсин. Первый обеспечивает цветоощущение и периферическое зрение, а второй – видение при слабой освещенности.


3. Пограничная мембрана (наружная). Структурно состоит из терминальных образований и наружных участков рецепторов ретины. Структура мюллеровских клеток за счет своих отростков делает возможным сбор света на сетчатке и его доставку к соответствующим рецепторам.


4. Ядерный слой (наружный). Получил свое название из-за того, что сформирован на основе ядер и тел светочувствительных клеток.


5. Плексиформный слой (наружный). Определяется контактами на уровне клеток. Возникают между нейронами, характеризуемыми как биполярные и ассоциативные. Сюда же относят и светочувствительные образования этого вида.


6. Ядерный слой (внутренний). Сформирован из разных клеток, например, биполярных и мюллеровских. Востребованность последних связана с необходимостью поддержания функций нервной ткани. Другие ориентированы на обработку сигналов от фоторецепторов.


7. Плексиформный слой (внутренний). Переплетение нервных клеток в части их отростков. Служит разделителем между внутренней частью сетчатки, характеризуемой как сосудистая, и наружной – бессосудистая.


8. Ганглиозные клетки . Обеспечивают свободное проникновение света ввиду отсутствия такого покрытия, как миелин. Являются мостом между светочувствительными клетками и зрительным нервом.


9. Ганглионарная клетка . Участвует в формировании зрительного нерва.


10. Пограничная мембрана (внутренняя). Покрытие ретины изнутри. Состоит из клеток Мюллера.

Оптическая система глаза

Качество зрения зависит от основных частей человеческого глаза. Состояние пропускающих в виде роговицы, сетчатки и хрусталика напрямую влияет на то, как будет видеть человек: плохо или хорошо.


Большее участие в преломлении лучей света принимает роговица. В этом контексте можно провести аналогию с принципом действия фотоаппарата. Диафрагма – это зрачок. С его помощью регулируется поток световых лучей, а фокусное расстояние задает качество изображения.

Благодаря хрусталику световые лучи попадают на «фотопленку». В нашем случае под ней следует понимать сетчатую оболочку.


Стекловидное тело и влага, находящаяся в глазных камерах, также преломляют световые лучи, но в значительно меньшей степени. Хотя состояние этих образований ощутимо сказывается на качестве зрения. Оно способно ухудшаться при снижении степени прозрачности влаги или появлении в ней крови.

Правильное восприятие окружающего мира через органы зрения предполагает, что проход световых лучей через все оптические среды приводит к формированию на сетчатке уменьшенного и перевернутого изображения, но реального. Заключительная обработка информации от зрительных рецепторов происходит в отделах головного мозга. За это отвечают затылочные доли.

Слезный аппарат

Физиологическая система, обеспечивающая выработку специальной влаги с последующим ее выводом в полость носа. Органы слезной системы классифицируются в зависимости от секреторного отдела и аппарата слезоотведения. Особенность системы заключается в парности ее органов.

Работа концевого отдела состоит в том, чтобы вырабатывать слезу. Его структура включает в себя слезную железу и добавочные образования подобного вида. Под первой понимается серозная железа, обладающая сложным строением. Подразделяется на две части (низ, верх), где в качестве разделительного барьера выступает сухожилие мышцы, отвечающей за подъем верхнего века. Область вверху в плане размера следующая: 12 на 25 мм при 5-миллиметровой толщине. Ее расположение определяется стенкой глазницы, имеющей направленность вверх и наружу. Эта часть включает в себя выводные канальцы. Их число варьируется от 3 до 5. Вывод осуществляется в конъюнктиву.

Что касается нижней части, то она обладает менее значительными размерами (11 на 8 мм) и меньшей толщиной (2 мм). У нее есть канальцы, где одни соединяются с такими же образованиями верхней части, а другие выводятся в конъюнктивальный мешок.


Обеспечение слезной железы кровью производится посредством слезной артерии, а отток организован в слезную вену. Тройничный лицевой нерв выступает в роли инициатора соответствующего возбуждения нервной системы. Также к этому процессу подключаются симпатические и парасимпатические нервные волокна.

В стандартной ситуации работают исключительно добавочные железы. Посредством их функциональности обеспечивается выработка слезы в объеме около 1 мм. Это обеспечивает требуемое увлажнение. Что касается основной слезной железы, то она вступает в действие при появлении разного рода раздражителей. Это могут быть инородные тела, слишком яркий свет, эмоциональный всплеск и т. д.

Структура слезоотводящего отдела основывается на образованиях, способствующих движению влаги. Также они отвечают за ее отвод. Такое функционирование обеспечивается благодаря слезному ручью, озеру, точкам, канальцам, мешку и носослезному протоку.

Упомянутые точки отлично визуализируются. Их расположение определяется внутренними углами век. Они ориентированы на слезное озеро и находятся в плотном соприкосновении с конъюнктивой. Установление связи между мешком и точками достигается посредством специальных канальцев, достигающих в длину 8–10 мм.

Расположение слезного мешка определяется костной ямкой, находящейся рядом с углом глазницы. С точки зрения анатомии это образование представляет собой закрытую полость цилиндрического вида. Она вытянута на 10 мм, а ее ширина составляет 4 мм. На поверхности мешка присутствует эпителий, имеющий в своем составе бокаловидный гландулоцит. Приток крови обеспечивается с помощью глазной артерии, а отток – мелких вен. Часть мешка внизу сообщается с носослезным каналом, выходящим в носовую полость.

Стекловидное тело

Вещество, похожее на гель. Заполняет глазное яблоко на 2/3. Отличается прозрачностью. Состоит на 99% из воды, имеющей в своем составе гиалоурановую кислоту.

В передней части находится выемка. Она прилегает к хрусталику. В остальном это образование контактирует с сетчатой оболочкой в части ее мембраны. ДЗН и хрусталик соотносятся посредством гиалоидного канала. Структурно стекловидное тело состоит из белка коллагена в виде волокон. Существующие промежутки между ними заполнены жидкостью. Это объясняет то, что рассматриваемое образование представляет собой студенистую массу.


По периферии располагаются гиалоциты – клетки, способствующие образованию гиалуроновой кислоты, белков и коллагенов. Также они участвуют в формировании белковых структур, известных как гемидесмосомы. С их помощью устанавливается плотная связь между мембраной сетчатки и самим стекловидным телом.


К главным функциям последнего относят:
  • придание глазу конкретной формы;
  • преломление световых лучей;
  • создание определенного напряжения в тканях органа зрения;
  • достижение эффекта несжимаемости глаза.

Фоторецепторы

Тип нейронов, входящих в состав сетчатой оболочки глаза. Обеспечивают обработку светового сигнала таким образом, что он преобразуется в электрические импульсы. Это запускает процессы биологического характера, приводящие к формированию зрительных образов. На практике фоторецепторные белки вбирают в себя фотоны, что насыщает клетку соответствующим потенциалом.

Светочувствительные образования – это своеобразные палочки и колбочки. Их функциональность способствует правильному восприятию объектов внешнего мира. В результате можно говорить об образовании соответствующего эффекта – зрения. Человек способен видеть за счет биологических процессов, протекающих в таких частях фоторецепторов, как внешние доли их мембран.

Еще существуют светочувствительные клетки, известные как глазки Гессе. Они находятся внутри пигментной клетки, обладающей чашеобразной формой. Работа этих образований заключается в улавливании направления лучей света и определении его интенсивности. С их помощью происходит обработка светового сигнала, когда на выходе получаются электрические импульсы.

Следующий класс фоторецепторов стал известен в 1990-х годах. Под ним подразумеваются светочувствительные клетки ганглиозного слоя сетчатой оболочки. Они поддерживают зрительный процесс, но в косвенной форме. Здесь подразумеваются биологические ритмы в течение суток и зрачковый рефлекс.

Так называемые палочки и колбочки с точки зрения функциональности существенно отличаются друг от друга. Например, первым присуща высокая чувствительность. Если освещение низкое, то именно они гарантируют формирование хоть какого-то зрительного образа. Этот факт дает понять, почему при недостаточной освещенности плохо различаются цвета. В этом случае активен лишь один тип фоторецепторов – палочки.


Для работы колбочек необходим более яркий свет, чтобы обеспечить прохождение соответствующих биологических сигналов. Строение сетчатки предполагает наличие колбочек разных типов. Всего их три. Каждый определяет фоторецепторы, настроенные на конкретную длину волн света.

За восприятие картинки в цвете отвечают отделы коры, ориентированные на обработку зрительной информации, что предполагает распознавание импульсов в формате RGB. Колбочки способны различать световой поток по длине волн, характеризуя их как короткие, средние и длинные. В зависимости от того, сколько фотонов способна поглотить колбочка, формируются соответствующие биологические реакции. Различные ответы этих образований базируются на конкретном количестве вобранных фотонов той или иной длины. В частности, фоторецепторные белки L-колбочек поглощают условный красный цвет, соотносимый с длинными волнами. Лучи света, имеющие меньшую длину, способны приводить к одному и тому же ответу в том случае, если они достаточно яркие.

Реакция одного и того же фоторецептора может провоцироваться волнами света различной длины, когда отличия наблюдаются и на уровне интенсивности светового потока. В результате мозг не всегда определяет свет и получаемую картинку. Посредством зрительных рецепторов происходит отбор и выделение максимально ярких лучей. Затем формируются биосигналы, поступающие в те отделы мозга, где происходит обработка информации такого вида. Создается субъективное восприятие оптической картинки в цвете.

Сетчатка глаза человека состоит из 6 млн колбочек и 120 млн палочек. У животных их количество и соотношение различно. Основное влияние оказывает образ жизни. У сов сетчатка содержит очень значительное количество палочек. Зрительная система человека – это почти 1,5 млн ганглиозных клеток. В их числе есть клетки, обладающие фоточувствительностью.

Хрусталик

Биологическая линза, характеризуемая с точки зрения формы как двояковыпуклая. Выступает в роли элемента светопроводящей и светопреломляющей системы. Обеспечивает возможность фокусировки на предметах, удаленных на разное расстояние. Расположен в задней камере глаза. Высота хрусталика составляет от 8 до 9 мм при его толщине от 4 до 5 мм. С возрастом происходит его утолщение. Этот процесс медленный, но верный. Передняя часть этого прозрачного тела обладает менее выпуклой поверхностью по сравнению с задней.

Форма хрусталика соотносится с двояковыпуклой линзой, имеющей радиус кривизны в передней части около 10 мм. При этом с обратной стороны этот параметр не превышает 6 мм. Диаметр хрусталика – 10 мм, а размер в передней части – от 3,5 до 5 мм. Содержащееся внутри вещество удерживается капсулой с тонкими стенками. Фронтальная часть имеет эпителиальную ткань, расположенную внизу. На задней стороне капсулы эпителия нет.

Эпителиальные клетки отличаются тем, что делятся постоянно, но это не сказывается на объеме хрусталика в плане его изменения. Такая ситуация объясняется обезвоживанием старых клеток, расположенных на минимальном удалении от центра прозрачного тела. Это способствует уменьшению их объемов. Процесс этого вида приводит к такой особенности, как возрастная . При достижении человеком 40-летнего возраста теряется эластичность хрусталика. Снижается резерв аккомодации, и возможность хорошо видеть на близком расстоянии существенно ухудшается.


Хрусталик размещен непосредственно за радужкой. Его удержание обеспечивают тонкие нити, образующие цинновую связку. Один их конец входит в оболочку хрусталика, а другой – закрепляется на цилиарном теле. Степень натяжения этих нитей влияет на форму прозрачного тела, что изменяет преломляющую силу. В итоге становится возможным процесс аккомодации. Хрусталик служит границей между двумя отделами: передним и задним.


Выделяют следующую функциональность хрусталика:
  • светопроводность – достигается за счет того, что тело этого элемента глаза прозрачное;
  • светопреломление – работает как биологическая линза, выступает в роли второй преломляющей среды (первая – роговица). В состоянии покоя параметр преломляющей силы составляет 19 диоптрий. Это норма;
  • аккомодация – изменение формы прозрачного тела в целях хорошего видения предметов, находящихся на разном удалении. Преломляющая сила в этом случае изменяется в диапазоне от 19 до 33 диоптрий;
  • разделение – образует два отдела глаза (передний, задний), что определяется особенностью расположения. Выступает в роли барьера, сдерживающего стекловидное тело. Оно не может оказаться в передней камере;
  • защита – обеспечивается биологическая безопасность. Болезнетворные микроорганизмы, оказавшись в передней камере, не способны проникнуть в стекловидное тело.

Врожденные заболевания в некоторых случаях приводят к смещению хрусталика. Он занимает неправильное положение из-за того, что связочный аппарата ослаблен или имеет какой-либо дефект строения. Сюда еще относят вероятность врожденных помутнений ядра. Все это способствует снижению зрения.

Циннова связка

Образование на основе волокон, определяемых как гликопротеиновые и зонулярные. Обеспечивает фиксацию хрусталика. Поверхность волокон покрыта мукополисахаридным гелем, что обусловливается потребностью в защите от влаги, присутствующей в камерах глаза. Пространство за хрусталиком служит местом, где находится это образование.

Активность цинновой связки приводит к сокращению цилиарной мышцы. Хрусталик изменяет кривизну, что позволяет фокусироваться на объектах, находящихся на разном удалении. Напряжение мышцы ослабляет натяжение, и хрусталик принимает форму, близкую к шару. Расслабление мышцы приводит к напряжению волокон, что сплющивает хрусталик. Фокусировка меняется.


Рассматриваемые волокна подразделяются на задние и передние. Одна сторона задних волокон крепится у зубчатого края, а другая – на фронтальной области хрусталика. Исходной точкой передних волокон служит основание цилиарных отростков, а крепление осуществляется в тыльной части хрусталика и ближе к экватору. Скрещенные волокна способствуют образованию по периферии хрусталика щелевидного пространства.

Крепление волокон на ресничном теле производится в части стекловидной мембраны. В случае отрыва этих образований констатируется так называемый вывих хрусталика, обусловленный его смещением.

Циннова связка выступает в качестве основного элемента системы, обеспечивающей возможность аккомодации глаза.

Видео

В статье рассмотрим строение глаза и виды оболочек.

Человек видит посредством глаз. Информация поступает через зрительный нерв, хиазму, зрительные тракты в затылочные доли коры головного мозга. Здесь происходит формирование картины внешнего мира. Так устроен наш зрительный анализатор или зрительная система.

Поскольку у нас 2 глаза, наше зрение стереоскопичное (то есть изображение трехмерное). Правая сторона сетчатки глаза передает часть изображения через зрительный нерв в правую сторону головного мозга, аналогично и с левой стороной. Затем две части изображения — правая и левая — соединяются воедино.

Оболочкой глаза называют среднюю часть зрительного органа, размещенную непосредственно в районе под склерой. Это мягкая, богатая сосудами пигментированная ткань, ее основными свойствами выступают аккомодация наряду с адаптацией и питанием сетчатки. Глаз человека является поразительной биологической оптической системой. Фактически, линзы, которые заключены сразу в несколько оболочек, дают возможность человеку увидеть окружающий мир объемным и цветным.

Строение оболочек глаза

Глаз у человека состоит сразу из трех оболочек, а кроме того, из двух камер, из стекловидного тела и хрусталика, которые занимают большую часть внутреннего глазного пространства. На самом деле строение данного шарообразного зрительного органа во многом похоже на сложный фотоаппарат. Нередко сложная структура глаза называется глазным яблоком. Оболочками органа не только удерживается внутренняя структура в заданной форме, но также осуществляется участие в сложных процессах аккомодации и снабжении питательными веществами.

Каково же строение оболочек глаза? Общепринято все слои глазных яблок разделять на три вида:

  • Фиброзный, а по-другому его еще называют наружной оболочкой глаза. Она состоит на 5/6 из непрозрачных клеток (это склера) и на 1/6 из прозрачных (речь идет о роговице).
  • Имеется также сосудистая оболочка глаза, которая делится на три части, а именно на радужку, на сосудистую ткань и на ресничное тело.
  • Сетчатка у человека состоит из целых одиннадцати слоев, одним из которых служат палочки и колбочки. С их помощью люди могут различать предметы.

Названия оболочек глаза не всем известны. Далее рассмотрим более детально каждую из них.

Фиброзная внешняя оболочка

Это, прежде всего, внешний слой клеток, покрывающий глазное яблоко. Он служит опорой и одновременно защитой для внутренних составляющих.

Рассмотрим строение оболочки глаза. Передняя часть этого наружного слоя является роговицей прочной, прозрачной и вогнутой. Это не просто оболочка, но еще и линза, которая преломляет видимый свет. Роговицу относят к тем частям глаза, которая хорошо видна и формируется из специальных прозрачных клеток эпителия. Задняя часть фиброзной оболочки глаза является склерой, состоящей из плотных клеток, к которым прикреплено шесть мышц, поддерживающих глаза (четыре прямые и две косые).

Склера является непрозрачной, плотной, по цвету белой, напоминающей белок яйца. Из-за этого ее называют белочной оболочкой. На границе между склерой и роговицей есть венозный синус. Им обеспечивается отток из глаза венозной крови. В роговице кровеносные сосуды отсутствуют, а на задней части в склере (там, где проходит зрительный нерв) имеется так называемая решетчатая пластинка. Через ее отверстия пролегают кровеносные сосуды, питающие глаз. Толщина каждого фиброзного слоя, как правило, колеблется от 1,1 миллиметра по краям роговицы (в центральной части она 0,8 миллиметров) до 0,4 миллиметров склеры в районе зрительного нерва. На границе с роговицей склера будет толще до 0,6 миллиметров. Далее поговорим о возможных повреждениях фиброзной глазной оболочки.

Повреждения фиброзной оболочки

Среди заболеваний и травм фиброзного слоя зачастую встречают:

  • Возникновение повреждения роговицы (конъюнктивов), это может оказаться царапиной, ожогом, кровоизлиянием и так далее.
  • Попадание инородного тела на роговицу (будь то ресницы, песчинки, более крупный предмет и так далее).
  • Развитие воспалительных процессов, к примеру, конъюнктивит. Нередко патология имеет инфекционный характер.
  • Среди болезней склеры весьма распространена стафилома. При этой патологии понижается способность склеры к растяжению.
  • В особенности частым выступает эписклерит, являющийся покраснением и припухлостью, вызванной воспалением поверхностного слоя.

Воспалительный процесс в склере обычно носит вторичный характер и вызван деструктивным процессом в прочих структурах глаза либо извне. Диагностика патологии роговицы, как правило, для медиков не представляет труда, так как степень повреждений офтальмолог определяет визуально. В ряде ситуаций требуются дополнительный анализ на выявление инфекций. Теперь узнаем о том, что представляет собой сосудистая глазная оболочка.

Сосудистая оболочка

Внутри между внутренним и внешним слоем располагается средняя сосудистая оболочка глаза, состоящая из радужки, а кроме того, из хориоидеи и цилиарного тела. Назначение данного слоя определяют как питание, защита и аккомодация:

  • Радужная глазная оболочка является своеобразной диафрагмой зрительного органа человека, она не просто принимает участие в образовании изображения, но и защищает сетчатку от ожогов. При наличии яркого света радужкой сужается пространство, и человек видит маленькую точку зрачка. Чем будет меньше света, тем шире окажется зрачоки радужка. Ее цвет напрямую зависит от числа клеток меланоцитов, к тому же он определяется генетически.
  • Цилиарное тело расположено за радужкой, им поддерживается хрусталик. Именно благодаря ему хрусталику удается очень быстро растягиваться, реагируя на свет и преломляя лучи. Ресничное тело принимает участие в продуцировании водянистой влаги для внутренней камеры глаза. Еще одним его предназначением является регуляция температурного режима непосредственно внутри глаза.
  • Остальную часть оболочки занимает хориоидея. Собственно, это и есть сосудистая оболочка, состоящая из большого числа кровеносных сосудов. Ею выполняются функции питания внутренней структуры глаз. Строение хориоидеи таково: снаружи расположены более крупные сосуды, а непосредственно внутри мелкие, а уже на самой границе находятся капилляры. Еще одной функцией ее выступает амортизация неустойчивых внутренних структур.

Расположением оболочек глаза интересуются многие пациенты.

Сосудистая оболочка снабжена большим числом пигментных клеток, поэтому она может препятствовать прохождению света внутрь глаза, тем самым устраняя рассеивание света. Толщина сосудистых слоев составляет от 0,2 до 0,4 миллиметров в районе цилиарного тела и только от 0,1-0,14 - близ зрительного нерва. Далее выясним, какие повреждения можно наблюдать в сосудистой глазной оболочке.

Повреждение и дефекты

Наиболее часто встречается болезнь под названием увеит (это воспаление сосудистой оболочки). Нередко встречается хориоидеит, сочетающийся с различного рода повреждениями сетчатки, к примеру, с хориоретинитом. Более редко встречаются следующие заболевания:

  • Появление дистрофии хориоидеи.
  • Развитие отслойки сосудистой оболочки, являющееся заболеванием, возникающим при перепаде внутриглазного давления, к примеру, при офтальмологической операции.
  • Появление разрывов в результате травмы и удара либо из-за кровоизлияния.
  • Возникновение опухолей, невуса.
  • Колобомы, что представляет собой полное отсутствие данной оболочки на определенном районе (это является врожденным дефектом).

Диагностику заболеваний проводят офтальмологи. Диагноз ставят в результате проведенного комплексного обследования.

Что еще входит в строение оболочек глаза?

Внутренняя сетчатка

Сетчатая оболочка у людей является сложной структурой, состоящей из одиннадцати слоев нервных клеток. Ею не захватывается передняя камера глаза, и она располагается за хрусталиком. Верхний слой составляется из светочувствительных клеток - из колбочек и палочек.

Абсолютно все эти слои являются сложной системой. В них происходит восприятие световой волны, которая проецируется на сетчатку и хрусталик. Благодаря нервным клеткам сетчатки они могут преобразовываться в нервный импульс. А далее эти нервные сигналы могут передаваться в мозг человека. Это является сложным и очень быстрым процессом.

Очень важную роль в этом процессе играет макула, ее второе название - это желтое пятно. Здесь осуществляется преобразование зрительного образа наряду с обработкой первичных данных. Макула в ответе за центральное зрение на фоне дневного света. Она является очень неоднородной оболочкой. Так, близ диска зрительного нерва ею достигается 0,5 миллиметра, тогда как в пределах ямочки желтого пятна - всего 0,07, а в центральном районе - до 0,25.

Повреждения внутренней глазной сетчатки

Среди повреждений оболочки глаза человека на бытовом уровне очень часто встречаются ожоги из-за катания на горных лыжах без использования защитных средств. Частыми являются следующие заболевания, такие как:

  • Ретинит, являющийся воспалением оболочки, возникающим в качестве инфекционного (гнойная инфекция, сифилис) либо аллергического заболевания. Часто на фоне недуга наблюдается покраснение оболочки глаза.
  • Отслоение сетчатки, возникающее на фоне истощения и разрыва сетчатки.
  • Появление макулярной дегенерации, в рамках которой поражаются центральные клетки, то есть макулы. Это основная причина утраты зрения среди пациентов, которым старше пятидесяти лет.
  • Развитие дистрофии сетчатки, являющееся заболеванием, затрагивающим в основном пожилых людей. Оно напрямую связано с истончением слоя сетчатки, поначалу его диагностика сильно затруднена.
  • Появление кровоизлияния в сетчатку также может быть результатом старения организма.
  • Развитие диабетической ретинопатии. Развивается через десять-двенадцать лет после заболевания диабетом, поражает сетчатку и ее нервные клетки.
  • Не исключено и появление опухолевых образований на сетчатой оболочке.

Диагностика патологий сетчатки потребует не просто специальной аппаратуры, но и выполнения дополнительных обследований. Терапия заболеваний сетчатого глазного слоя у пожилых людей обычно имеет осторожный прогноз. При этом заболевания, вызванные воспалениями, имеют более благоприятные прогнозы, чем те, которые связаны с процессом старения организма.

Каковы функции оболочек глаза?

Зачем человеку нужна слизистая глазная оболочка?

Глазное яблоко у человека находится в специальной орбите и надежно закрепляется. Большая часть его спрятана, а непосредственно световые лучи пропускает лишь 1/5 поверхности. Сверху данный участок глазного яблока закрывается веками, которые при открытии образуют щель, посредством которой проходит свет. Веки у людей оборудованы ресницами, которые защищают от пыли и внешнего воздействия. Ресницы с веками являются наружной оболочкой глаз.

Слизистая оболочка зрительного органа человека называется конъюнктивой. Веки изнутри выстланы слоем специальных эпителиальных клеток, образующих розовый слой. Данный слой нежного эпителия, собственно, и называют конъюнктивой. Клетки конъюнктивы в себе содержат слезные железы. Продуцируемая ими слеза не просто увлажняет роговицу, предотвращая ее пересыхание, но к тому же содержит питательные и бактерицидные вещества для роговицы.

Конъюнктива имеет кровеносные сосуды, которые соединяющиеся с капиллярами лица, и обладает лимфатическими узлами, служащими форпостами для инфекций. Благодаря всем этим оболочкам глаза человека надежно защищены, получают необходимое питание. Кроме этого, оболочки глаза принимают участие в процессах аккомодации и преобразований полученной информации. Появление заболевания или же других поражений глазных оболочек могут провоцировать потерю остроты зрения.

Строение радужной оболочки глаза

Радужная оболочка зрительных органов представляет собой две категории мышц. Мышцы, относящиеся к первой категории, находятся вокруг зрачков, от их работы напрямую зависит их сокращение. Вторая группа расположена радиально по всей толщине радужки, она в ответе за расширение зрачков. Радужка состоит из следующих слоев (их еще называют листами):

  • Из пограничного (переднего) слоя.
  • Из стромального слоя.
  • Из пигментного мышечного (заднего) слоя.

В том случае, если внимательно посмотреть спереди на радужку, то можно легко различать определенные детали всего ее строения. Самым высоким местом являются брыжи, благодаря которым она как бы разделяется на две части, а именно на внутреннюю зрачковую и цилиарную наружную долю. По обе стороны брыжей непосредственно на поверхности радужки располагаются лакуны или крипты, являющиеся щелевидными бороздками. Толщина глазной радужки варьируется от 0,2 до 0,4 миллиметров. У зрачковых краев радужная оболочка во много раз толще, чем на периферии.

Строение глаза человека уникально.

Цвет радужки и ее функции

От работы ее мышц напрямую зависит ширина световых потоков, проникающих через зрачок внутрь глаз непосредственно к сетчатке. Дилататор является мышцей, отвечающей за расширение зрачка. Сфинктер выступает мышцей, благодаря которой зрачки суживаются.

Тем самым осуществляется поддержка освещенности на нужном уровне. Наличие слабого освещения может вызывать расширение зрачков, тем самым увеличивается общий поток света. На процесс работы мышц радужной оболочки оказывает влияние общее психическое, а вместе с тем и эмоциональное состояние человека наряду с медикаментами.

Радужная оболочка является непрозрачным слоем, обладающим цветом, зависящим от особого пигмента - меланина. Последнее, как правило, передается людям по наследству. Новорожденные дети зачастую обладают радужкой голубого цвета. Это считается последствием слабой пигментации. Но зато спустя полгода количество пигментных клеток начинает быстро увеличиваться, и цвет у глаз может заметно изменяться.

Кроме этого, в природе встречают полное отсутствие в радужной оболочке меланина. Люди, которые лишены пигментов не просто в радужке, но и в кожном и волосяном покрове, называются альбиносами. Еще реже в природе можно встретить явление гетерохромии, при этом цвет одного глаза будет отличаться от другого.

Мы рассмотрели строение глаза человека.

Глаз человека поразительная биологическая оптическая система. Фактически линзы, заключенные в несколько оболочек позволяют человеку видеть окружающий мир цветным и объемным.

Здесь мы рассмотрим, какой может быть оболочка глаза, во сколько оболочек заключен глаз человека и выясним их отличительные особенности и функции.

Глаз состоит из трёх оболочек, двух камер, и хрусталика и стекловидного тела, которое занимает большую часть внутреннего пространства глаза. На самом деле строение этого шарообразного органа во многом схоже с строением сложного фотоаппарата. Нередко сложную структуру глаза называют глазным яблоком.

Оболочки глаза не только удерживают внутренние структуры в заданной форме, но также берут участие в сложном процессе аккомодации и снабжают глаз питательными веществами. Принято все слои глазного яблока разделять на три оболочки глаза:

  1. Фиброзная или наружная оболочка глаза. Которая на 5/6 состоит из непрозрачных клеток – склеры и на 1/6 из прозрачных – роговицы.
  2. Сосудистая оболочка. Её разделяют на три части: радужка, ресничное тело и сосудистая оболочка.
  3. Сетчатка. Она состоит из 11 слоев, одним из которых будут колбочки и палочки. С их помощью человек может различать предметы.

Теперь рассмотрим каждую из них более детально.

Внешняя фиброзная оболочка глаза

Это внешний слой клеток, который покрывает глазное яблоко. Он опора и одновременно защитный слой для внутренних составляющих. Передняя часть этого наружного слоя – роговица прочная прозрачная и сильно в вогнутая. Это не только оболочка, но и линза, преломляющая видимый свет. Роговица относится к тем частям глаза человека, которая видна и образуется из прозрачных специальных прозрачных клеток эпителия. Задняя часть фиброзной оболочки – склера состоит из плотных клеток, к которым крепятся 6 мышц, поддерживающих глаз (4 прямых и 2 косых). Она непрозрачная, плотная, по цвету белая (напоминает белок вареного яйца). Из-за этого её второе называние белочная оболочка. На рубеже между роговицей и склерой находится венозный синус. Он обеспечивает отток венозной крови из глаза. В роговице кровеносных сосудов нет, а вот в склере на задней части (там, где выходит зрительный нерв) есть так называемое решетчатая пластинка. Через её отверстия проходят кровеносные сосуды, которые питают глаз.

Толщина фиброзного слоя – колеблется от 1,1 мм по краям роговицы (в центре она 0,8 мм) до 0, 4 мм склеры в области зрительного нерва. На границе с роговицей склера несколько толще до 0,6 мм.

Повреждения и дефекты фиброзной оболочки глаза

Среди болезней и травм фиброзного слоя чаще всего встречаются:

  • Повреждение роговицы (конъюнктивы), это может быть царапина, ожог, кровоизлияние.
  • Попадание на роговицу инородного тела (ресница, песчинка, более крупные предметы).
  • Воспалительные процессы – конъюнктивит. Нередко заболевание носит инфекционный характер.
  • Среди заболеваний склеры распространена стафилома. При этом заболевании снижается способность склеры к растяжению.
  • Наиболее частым будет эписклерит – покраснение, припухлость вызванная воспалением поверхностных слоёв.

Воспалительные процессы в склере обычно носят вторичный характер и вызваны деструктивными процессами в других структурах глаза или извне.

Диагностика заболевания роговицы обычно не представляет труда, так как степень повреждения определяется офтальмологом визуально. В ряде случаев (конъюнктивит) требуются дополнительные анализы на выявления инфекции.

Средняя, сосудистая оболочка глаза

Внутри между внешним и внутренним слоем, расположена средняя сосудистая оболочка глаза. Она состоит из радужки, цилиарного тела и хориоидеи. Назначение этого слоя определяется как питание и защита и аккомодация.

  1. Радужка. Радужная оболочка глаза это своеобразная диафрагма глаза человека, она не только берёт участие в образовании картинки, но и предохраняет сетчатку от ожога. При ярком свете радужка сужает пространство, и мы видим очень маленькую точку зрачка. Чем меньше света, тем больше зрачок и уже радужка.

    Цвет радужки зависит от количества клеток меланоцитов и определяется генетически.

  2. Ресничное или цилиарное тело. Оно расположено за радужкой и поддерживает хрусталик. Благодаря ему хрусталик может быстро растягиваться и реагировать на свет, преломлять лучи. Ресничное тело берет участие в выработке водянистой влаги для внутренних камер глаза. Ещё одним его назначением будет регуляции температурного режима внутри глаза.
  3. Хориоидея. Остальную часть этой оболочки занимает хориоидея. Собственно это сама сосудистая оболочка, которая состоит из большого количества кровеносных сосудов и выполняет функции питания внутренних структур глаза. Строение хориоидеи таково, что снаружи находятся более крупные сосуды, а внутри более мелкие и на самой границе капилляры. Еще одной её функцией будет амортизация внутренних неустойчивых структур.

Сосудистая оболочка глаза снабжена большим количеством пигментных клеток, она препятствует прохождению света внутрь глаза и тем самым устраняет рассеивание света.

Толщина сосудистого слоя составляет 0,2–0,4 мм в районе цилиарного тела и всего лишь 0,1 – 0,14 мм возле зрительного нерва.

Повреждения и дефекты сосудистой оболочки глаза

Наиболее часто встречающееся заболевание сосудистой оболочки – это увеит (воспаление сосудистой оболочки). Нередко встречают хориоидеит который сочетается с разного рода повреждениями сетчатки (хориоредитинитом).

Более редко встречаются такие заболевания как:

  • дистрофии хориоидеи;
  • отслойка сосудистой оболочки, это заболевание возникает при перепадах внутриглазного давления, например при офтальмологических операциях;
  • разрывы в результате травм и ударов, кровоизлияния;
  • опухоли;
  • невусы;
  • колобомы – полное отсутствие этой оболочки на определенном участке (это врожденный дефект).

Диагностика заболеваний проводиться офтальмологом. Диагноз ставится в результате комплексного обследования.

Сетчатая оболочка глаза человека представляет сложную структуру из 11 слоёв нервных клеток. Она не захватывает переднюю камеру глаза и расположена за хрусталиком (сморим рисунок). Самый верхний слой составляют светочувствительные клетки колбочки и палочки. Схематически расположение слоёв выглядит примерно так, как на рисунке.

Все эти слои представляют сложную систему. Здесь происходит восприятия световых волн которые проецируют на сетчатку роговица и хрусталик. С помощью нервных клеток сетчатки они преобразовываются в нервные импульсы. А затем эти нервные сигналы передаются в мозг человека. Это сложный и очень быстрый процесс.

Очень важную роль играет в этом процессе макула, второе её название желтое пятно. Здесь происходит преобразование зрительных образов, и обработка первичных данных. Макула отвечает за центральное зрение при дневном свете.

Это очень неоднородная оболочка. Так, возле диска зрительного нерва она достигает 0,5 мм тогда как в ямочке желтого пятна всего 0,07 мм, а в центральной ямке до 0,25 мм.

Повреждения и дефекты внутренней сетчатки глаза

Среди повреждений сетчатой оболочки глаза человека, на бытовом уровне, наиболее часто встречается ожог от катания на горных лыжах без защитных средств. Частыми будут такие заболевания как:

  • ретиниты – это воспаление оболочки, которое возникает как инфекционное (гнойные инфекции, сифилис) или же аллергического характера;
  • отслоения сетчатки, возникающиет при истощении и разрыве сетчатки;
  • макулярная дегенерация возрастная, для которой поражаются клетки центра — макулы. Это наиболее частая причина потери зрения у пациентов старше 50 лет;
  • дистрофия сетчатки – это заболевание затрагивает чаще всего пожилых людей, связано оно с истончением слоев сетчатки, на первых порах его диагностика затруднена;
  • кровоизлияние в сетчатку также возникает как результат старения организма у пожилых людей;
  • диабетическая ретинопатия. Развивается через 10 – 12 лет после заболевания сахарным диабетом и поражает нервные клетки сетчатки.
  • возможны и опухолевые образования на сетчатой оболочке.

Диагностика заболеваний сетчатки требует не только специальной аппаратуры, но и проведения дополнительных обследований.

Лечения заболеваний сетчатого слоя глаза пожилого человека обычно имеет осторожные прогнозы. При этом заболевание вызванные воспалением имеют более благоприятный прогноз, чем те, что связанные с процессами старения организма.

Зачем нужна слизистая оболочка глаза?

Глазное яблоко находится в глазной орбите и надежно закреплено. Большая часть его спрятана, лучи света пропускает только 1/5 поверхности — роговица. Сверху этот участок глазного яблока закрыт веками, которые открываясь, образуют щель, через которую проходит свет. Веки оборудованы ресницами, защищающими от пыли и внешних воздействий роговицу. Ресницы и веки – это наружная оболочка глаза.

Слизистая оболочка глаза человека — это конъюнктива. Веки изнутри устланы слоем эпителиальных клеток, которые образуют розовый слой. Этот слой нежного эпителия и называется конъюнктива. Клетки конъюнктивы содержат также слезные железы. Вырабатываемая ими слеза не только увлажняет роговицу и предотвращает её пересыхание, но также содержит бактерицидные и питательные вещества для роговицы.

Конъюнктива обладает кровеносными сосудами, которые соединяются с сосудами лица, и имеет лимфатические узлы, служащие форпостами для инфекции.

Благодаря всем оболочкам глаз человека надежно защищен, получает необходимое питание. Кроме того оболочки глаза берут участие в аккомодации и преобразовании полученной информации.

Возникновения заболевания или же другие поражения оболочек глаза могут вызвать потерю остроты зрения.

Орган зрения является самым важным из всех органов чувств человека, ведь около 80% информации о внешнем мире человек получает через зрительный анализатор. Глаз способен воспринимать видимый свет - электромагнитное излучение с длиной волн от 440 до 700 нм.

Орган зрения (зрительный анализатор) состоит из 4-х частей:

1)Периферической или воспринимающей части, включающей в себя:
- глазное яблоко
- защитный аппарат глазного яблока (верхнее и нижнее веки, глазница)
- придаточный аппарат глаза (слезная железа, ее протоки, конъюнктива)
- глазодвигательный аппарат, состоящий из мышц.
2)Проводящих путей – зрительного нерва, зрительного перекреста и зрительного тракта
3)Подкорковых центров
4)Высших зрительных центров, расположенных в затылочных долях коры больших полушарий

Глазное яблоко

Глаз располагается в глазнице и окружен мягкими тканями (жировая клетчатка, мышцы, нервы и др.) Спереди он покрыт конъюнктивой и прикрыт веками. Глазное яблоко состоит из трех оболочек, ограничивающих внутреннее пространство на переднюю, заднюю камеры глаза, а также пространство, заполненное стекловидным телом - стекловидная камера.

Наружная (фиброзная) оболочка глаза

Представлена плотной соединительной тканью. Она состоит из прозрачной роговицы в переднем отделе глаза и белого цвета непрозрачной склеры на остальном протяжении. Обладая эластическими свойствами, эти две оболочки образуют характерную форму глаза.

Роговица
Это прозрачная часть(1/5) фиброзной оболочки. Место ее перехода в склеру называется лимбом. Форма роговицы эллипсоидная, вертикальный диаметр – 11мм, горизонтальный – 12 мм. Толщина роговицы около 1мм. Прозрачность роговицы объясняется уникальностью ее строения, в ней все клетки расположены в строгом оптическом порядке и в ней отсутствуют кровеносные сосуды.

Роговица состоит из 5-ти слоев:
1.передний эпителий
2.боуменова оболочка;
3.строма;
4. десцеметова оболочка;
5 .задний эпителий (эндотелий)

Роговица богата нервными окончаниями, поэтому она очень чувствительна. Роговица не только пропускает, но и преломляет световые лучи, она имеет большую преломляющую силу.

Склера
Это непрозрачная часть фиброзной оболочки, которая имеет белый цвет. Несмотря на свою толщину в 1 мм она очень плотная и прочная. Склера состоит в основном из плотных волокон, которые и придают ей такую прочность. К склере крепятся мышцы глаза.

Сосудистая оболочка

Это средняя оболочка глаза, состоящая в основном из сосудов разных калибров.

Она подразделяется на 3-и части:
1.Радужка – передняя часть
2.Ресничное (цилиарное) тело- средняя часть
3.Хориоидея – задняя часть

Радужка
По форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из 2-х мышц: суживающих и расширяющих зрачок при сокращении и расслаблении которых размеры зрачка меняются. В состав радужки входят клетки содержащие пигмент, которые определяют цвет глаз (если он голубой - значит, в ней мало пигментных клеток, если карий - много). Радужка выполняет функцию регулятора ширины светового пучка, попадающего внутрь глаза.
Зрачок
Это отверстие в радужке. Его размеры зависят от уровня освещенности. Чем больше света, тем меньше зрачок и наоборот. В среднем диаметр зрачка 3-4 мм.

Ресничное(цилиарное) тело
Это средняя утолщенная часть сосудистой оболочки, имеющая форму циркулярного валика, состоящая в основном из двух функционально разных частей:1.сосудистой, состоящей в основном из сосудов и 2.цилиарной мышцы. Сосудистая часть впереди несет на себе около 70 тонких отростков. Основной функцией отростков является выработка внутриглазной жидкости заполняющей глаз. От отростков отходят тонкие цинновы связки на которых подвешивается хрусталик.
Цилиарная мышца делится на 3 порции: наружную меридиональную, среднюю радиальную и внутреннюю циркулярную. Сокращаясь и расслабляясь они участвуют в процессе аккомодации.

Хориоидея
Это задняя часть сосудистой оболочки, состоящая из артерий, вен и капилляров. Основной ее функцией является питание сетчатки и транспорта крови к ресничному телу и радужке. Она придает красный цвет глазному дну за счет содержащейся в ней крови.

Внутренняя сетчатая оболочка (сетчатка)

Сетчатка является первым отделом зрительного анализатора. В сетчатке свет преобразуется в нервные импульсы, которые по нервным волокнам передаются в мозг. Там они анализируются, и человек воспринимает изображение. Сетчатка состоит из 10-ти слоев. Наружный слой сетчатки – пигментный. Он поглощает свет, уменьшая его рассеивание внутри глаза. В следующем слое находятся отростки клеток сетчатки – палочек и колбочек. Отростки содержат зрительные пигменты – родопсин (палочки) и йодопсин (колбочки). Оптически активную часть сетчатки можно увидеть при обследовании глаза. Она называется глазное дно. На глазном дне можно рассмотреть сосуды, диск зрительного нерва (место выхода глазного нерва из глаза), а так же желтое пятно. Желтое пятно – это область сетчатки, где сосредоточено максимальное количество колбочек, отвечающих за цветовое зрение.

Внутреннее ядро (полость) глаза

Полость глаза содержит светопроводящие и светопреломляющие среды: водянистую влагу, заполняющую его переднюю и заднюю камеры, хрусталик и стекловидное тело.

Внутриглазная жидкость или водянистая жидкость
Внутриглазная жидкость располагается в передней части глаза. Передняя камера глаза - это пространство между роговицей и радужкой, задняя камера - пространства между радужкой и хрусталиком.Они сообщаются между собой через зрачок. Жидкость постоянно циркулирует между задней и передней камерой. Водянистая влага по составу очень похожа на плазму крови отфильтрованную через цилиарые отростки. Основная ее функция: питание роговицы и хрусталика.

Хрусталик
Представляет собой прозрачное полутвердое бессосудистое тело в форме двояковыпуклой линзы, заключенной в прозрачную капсулу, диаметром от 9 до 10мм и толщиной от 3.6 до 5 мм. Он находится за радужкой в углублении на передней поверхности стекловидного тела. В этом положении он удерживается цинновыми связками. Со всех сторон он омывается камерной влагой за счет которой происходит его питание. Основная его функция- это преломление световых лучей и фокусировка их на сетчатке.

Стекловидное тело
Задний отдел глаза занимает стекловидное тело, заключенное в камеру. Оно представляет собой прозрачную студенистую массу(типа геля), объемом 4мл. Основу геля составляет вода(98%) и гиалуроновая кислота. В стекловидном теле происходит постоянный ток жидкости. Функция стекловидного тела: преломление световых лучей, поддержание формы и тонуса глаза, а так же питание сетчатки.

Защитный аппарат глаза

Глазница
Глазница является костным вместилищем для глаза. Она имеет форму усеченной четырехгранной пирамиды, обращенной вершиной в сторону черепа под. углом 45%.Глубина ее – около 4-5см.,размеры 4*3.5см. Кроме глаза она содержит жировое тело, зрительный нерв, мышцы и сосуды глаза.

Веки
Веки(верхнее и нижнее) защищают глазное яблоко от попадания различных предметов. Они смыкаются даже при движении воздуха и при малейшем прикосновении к роговице. При помощи мигательных движений век с поверхности глазного яблока убираются мелкие частицы пыли, и равномерно распределяется слезная жидкость. Свободные края век плотно прилегают друг к другу при их смыкании. По краю век растут ресницы. Они также защищают глаз от попадания в него мелких предметов и пыли. Кожа век тонкая, легко собирающаяся в складки. Под кожей век находятся мышцы: круговая мышца глаза, с помощью которой веки смыкаются и мышца, поднимающая верхнее веко. С внутренней стороны веки покрыты конъюнктивой.

Конъюнктива
Она представляет собой тонкую(0.1мм), слизистого строения ткань, которая в виде нежной оболочки покрывает заднюю поверхность век и, образовав своды конъюнктивального мешка, переходит на переднюю поверхность глаза. Оканчивается она у лимба. При закрытых веках между листками конъюнктивы образуется щелевидная полость, напоминающая мешок. Когда веки открыты, объем его заметно уменьшается. Основная функция – защитная.

Слезный аппарат глаза

Состоит из слезной железы, слезных точек, канальцев, слезного мешка и носослезного протока. Слезная железа, расположена в верхненаружной стенке глазницы. Она выделяет слезы, которые по выводным каналам попадают на поверхность глаза, стекает в нижний конъюнктивальный свод. Затем через верхнюю и нижнюю слезные точки, которые находятся во внутреннем углу глаза на ребрах век по слезным канальцам попадают в слезный мешок(находится между внутренним углом глаза и крылом носа),откуда по носослезному каналу попадает в нос.
Слеза – прозрачная жидкость со слабощелочной средой и сложным биохимическим составом, большую часть которой составляет вода. В норме в день выделяется не более 1мл. Она выполняет ряд важных функций: защитную, оптическую и питательную.

Мышечный аппарат глаза

Шесть глазодвигательных мышц делятся на две косых: верхнюю и нижнюю; четыре прямых: верхнюю, нижнюю, латеральную, медиальную. А также существует подниматель верхнего века и круговая мышца глаза. При помощи этих мышц глазное яблоко может вращаться во все стороны, подниматься верхнее веко, а также зажмуриваться глаз.